Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

High-Tc SQUID vs. low-Tc … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

High-Tc SQUID vs. low-Tc SQUID-based recordings on a head phantom: Benchmarking for magnetoencephalography

Artikel i vetenskaplig tidskrift
Författare Minshu Xie
Justin F. Schneiderman
Maxim Chukharkin
Alexei Kalaboukhov
S. Whitmarsh
D. Lundqvist
Dag Winkler
Publicerad i IEEE transactions on applied superconductivity
Volym 25
Nummer/häfte 3
ISSN 1051-8223
Publiceringsår 2015
Publicerad vid Institutionen för neurovetenskap och fysiologi
Språk en
Länkar doi.org/10.1109/TASC.2014.2366420
Ämnesord Benchmark testing; dc-SQUIDs; High-temperature superconductors; Magnetoencephalography; Yttrium barium copper oxide
Ämneskategorier Nanoteknik

Sammanfattning

We explore the potential that high critical-temperature (high-Tc) superconducting quantum interference device (SQUID) technology has for magnetic recordings of brain activity, i.e., magnetoencephalography (MEG). To this end, we performed a series of benchmarking experiments to directly compare recordings with a commercial (low-Tc SQUID-based) 306-channel MEG system (Elekta Neuromag TRIUX, courtesy of NatMEG) and a single channel high-Tc SQUID system. The source on which we recorded is a head phantom including 32 artificial current dipoles housed inside a half-spherical shell (courtesy Elekta Oy) for calibrating MEG systems. The high-Tc SQUID magnetometer consisted of a single layer YBa2Cu3O7-x (YBCO) film on a 10 mm × 10 mm bicrystal substrate with a magnetic field sensitivity of ~40 fT/Hz down to 10 Hz. We recorded serial activations of eight tangential current dipoles located at different depths from the surface of the head phantom. Results indicate that our individual high-Tc SQUID demonstrated signal-to-noise ratios (SNRs) about 7-14 times lower than that of similarly-positioned low-Tc SQUIDs in a commercial MEG system. Only considering single-channel SNR, high-Tc SQUIDs with resolution better than 18 fT/Hz would be required to outperform the low-Tc system for shallow dipole sources. This work demonstrates a proof of principle study for future multichannel high-Tc MEG system development.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?