Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Numerical analysis of the… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers

Artikel i vetenskaplig tidskrift
Författare Tomas Rosen
Jonas Einarsson
Arne Nordmark
C. K. Aidun
Fredrik Lundell
Bernhard Mehlig
Publicerad i Physical Review E. Statistical, Nonlinear, and Soft Matter Physics
Volym 92
Sidor no. 063022
ISSN 1539-3755
Publiceringsår 2015
Publicerad vid Institutionen för fysik (GU)
Sidor no. 063022
Språk en
Länkar dx.doi.org/10.1103/PhysRevE.92.0630...
Ämneskategorier Fysik

Sammanfattning

We numerically analyze the rotation of a neutrally buoyant spheroid in a shear flow at small shear Reynolds number. Using direct numerical stability analysis of the coupled nonlinear particle-flow problem, we compute the linear stability of the log-rolling orbit at small shear Reynolds number Rea. As Rea→0 and as the box size of the system tends to infinity, we find good agreement between the numerical results and earlier analytical predictions valid to linear order in Rea for the case of an unbounded shear. The numerical stability analysis indicates that there are substantial finite-size corrections to the analytical results obtained for the unbounded system. We also compare the analytical results to results of lattice Boltzmann simulations to analyze the stability of the tumbling orbit at shear Reynolds numbers of order unity. Theory for an unbounded system at infinitesimal shear Reynolds number predicts a bifurcation of the tumbling orbit at aspect ratio λc≈0.137 below which tumbling is stable (as well as log rolling). The simulation results show a bifurcation line in the λ−Rea plane that reaches λ≈0.1275 at the smallest shear Reynolds number (Rea=1) at which we could simulate with the lattice Boltzmann code, in qualitative agreement with the analytical results.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?