Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Contribution of Brown Car… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Contribution of Brown Carbon to Direct Radiative Forcing over the Indo-Gangetic Plain

Artikel i vetenskaplig tidskrift
Författare P. M. Shainjad
S. N. Tripathi
Ravi K. Pathak
Mattias Hallquist
A. Arola
M. H. Bergin
Publicerad i Environmental Science & Technology
Volym 49
Nummer/häfte 17
Sidor 10474-10481
ISSN 0013-936X
Publiceringsår 2015
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 10474-10481
Språk en
Länkar dx.doi.org/10.1021/acs.est.5b03368
Ämnesord AEROSOL ABSORPTION-MEASUREMENT, LIGHT-ABSORPTION, BLACK CARBON, ANGSTROM, EXPONENT, MASS-SPECTROMETER, PARTICLES, ATMOSPHERE, SCATTERING, AERONET, Engineering, Environmental, Environmental Sciences
Ämneskategorier Miljövetenskap, Ekologi, Annan teknik

Sammanfattning

The Indo-Gangetic Plain is a region of known high aerosol loading with substantial amounts of carbonaceous aerosols from a variety of sources, often dominated by biomass burning. Although black carbon has been shown to play an important role in the absorption of solar energy and hence direct radiative forcing (DRF), little is known regarding the influence of light absorbing brown carbon (BrC) on the radiative balance in the region. With this in mind, a study was conducted for a one month period during the winter spring season of 2013 in Kanpur, India that measured aerosol chemical and physical properties that were used to estimate the sources of carbonaceous aerosols, as well as parameters necessary to estimate direct forcing by aerosols and the contribution of BrC absorption to the atmospheric energy balance. Positive matrix factorization analyses, based on aerosol mass spectrometer measurements, resolved organic carbon into four factors including low-volatile oxygenated organic aerosols, semivolatile oxygenated organic aerosols, biomass burning, and hydrocarbon like organic aerosols. Three-wavelength absorption and scattering coefficient measurements from a Photo Acoustic Soot Spectrometer were used to estimate aerosol optical properties and estimate the relative contribution of BrC to atmospheric absorption. Mean +/- standard deviation values of short-wave cloud free clear sky DRF exerted by total aerosols at the top of atmosphere, surface and within the atmospheric column are -6.1 +/- 3.2, -31.6 +/- 11, and 25.5 +/- 10.2 W/m(2), respectively. During days dominated by biomass burning the absorption of solar energy by aerosols within the atmosphere increased by similar to 35%, accompanied by a 25% increase in negative surface DRF. DRF at the top of atmosphere during biomass burning days decreased in negative magnitude by several W/m(2) due to enhanced atmospheric absorption by biomass aerosols, including BrC. The contribution of BrC to atmospheric absorption is estimated to range from on average 2.6 W/m(2) for typical ambient conditions to 3.6 W/m(2) during biomass burning days. This suggests that BrC accounts for 10-15% of the total aerosol absorption in the atmosphere, indicating that BrC likely plays an important role in surface and boundary temperature as well as climate.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?