Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Interactions of N2O5 and … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Interactions of N2O5 and Related Nitrogen Oxides with Ice Surfaces: Desorption Kinetics and Collision Dynamics

Artikel i vetenskaplig tidskrift
Författare Liza Romero Lejonthun
Patrik U Andersson
Mattias Hallquist
Erik S Thomson
Jan B. C. Pettersson
Publicerad i Journal of Physical Chemistry B
Volym 118
Nummer/häfte 47
Sidor 13427-13434
ISSN 1520-6106
Publiceringsår 2014
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 13427-13434
Språk en
Länkar dx.doi.org/10.1021/jp5053826
Ämnesord NITRIC-ACID TRIHYDRATE, WATER-ICE, MOLECULAR-BEAM, HETEROGENEOUS, REACTIONS, VIBRATIONAL-EXCITATION, DINITROGEN TETROXIDE, OZONE, DEPLETION, ADSORPTION, TEMPERATURE, CRYSTALLINE
Ämneskategorier Fysikalisk kemi

Sammanfattning

The detailed interactions of nitrogen oxides with ice are of fundamental interest and relevance for chemistry in cold regions of the atmosphere. Here, the interactions of NO, NO2, N2O4, and N2O5 with ice surfaces at temperatures between 93 and 180 K are investigated with molecular beam techniques. Surface collisions are observed to result in efficient transfer of kinetic energy and trapping of molecules on the ice surfaces. NO and NO2 rapidly desorb from pure ice with upper bounds for the surface binding energies of 0.16 +/- 0.02 and 0.26 +/- 0.03 eV, respectively. Above 150 K, N2O4 desorption follows first-order kinetics and is well described by the Arrhenius parameters E-a = 0.39 +/- 0.04 eV and A = 10((15.41.2)) s(1), while a stable N2O4 adlayer is formed at lower temperatures. A fraction of incoming N2O5 reacts to form HNO3 on the ice surface. The N2O5 desorption rates are substantially lower on pure water ice (Arrhenius parameters: Ea = 0.36 +/- 0.02 eV; A = 10(15.3 +/- 0.7) s(-1)) than on HNO3-covered ice (Ea = 0.24 +/- 0.02 eV; A = 10(11.5 +/- 0.7) s(-1)). The N2O5 desorption kinetics also sensitively depend on the sub-monolayer coverage of HNO3, with a minimum in N2O5 desorption rate at a low but finite coverage of HNO3. The studies show that none of the systems with resolvable desorption kinetics undergo ordinary desorption from ice, and instead desorption likely involves two or more surface states, with additional complexity added by coadsorbed molecules.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?