Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

FEBS Journal Prize Lectur… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

FEBS Journal Prize Lecture: Sustained glycolytic oscillations in individual isolated yeast cells

Konferensbidrag (offentliggjort, men ej förlagsutgivet)
Författare Anna-Karin Gustavsson
David D. Niekerk
Caroline B. Adiels
Franco du Preez
Mattias Goksör
Jacky L. Snoep
Publicerad i FEBS Journal
Volym 280
Nummer/häfte Suppl. S1
Sidor 2
Publiceringsår 2013
Publicerad vid Institutionen för fysik (GU)
Sidor 2
Språk en
Länkar dx.doi.org/10.1111/febs.12339
Ämneskategorier Optik, Optisk fysik, Biokemi, Cell- och molekylärbiologi, Molekylär biofysik, Cellbiologi

Sammanfattning

Yeast glycolytic oscillations have been extensively studied since the 1950s in dense populations of cells and in cell-free extracts. Until recently, sustained oscillations had only been observed at the population level, i.e. for synchronized cultures at high biomass concentrations. One question that had not been satisfactorily addressed was whether individual cells display qualitatively different behaviour from the mean behaviour of a population of cells. We were able to observe sustained oscillations in individual isolated cells using a sophisticated experimental setup in which the concentration of metabolites in glycolysis was quantified by measuring the autofluorescence intensity from NADH molecules in the individual cells, the extracellular environment was controlled both spatially and temporally using microfluidics, and the cell density and position of the cell array within the microfluidic flow chamber was varied using optical tweezers. We thus showed that a high cell density is not a requirement for induction of oscillatory behaviour. A detailed kinetic model for the cellular reactions was adjusted to describe isolated cells in a microfluidic flow chamber. It was successfully used to simulate the heterogeneity in the oscillatory response of the individual cells, assuming small differences in a single internal parameter. In further studies we have investigated the precise conditions for autonomous oscillations at the single cell level. We have also investigated how the extracellular environment affects the characteristics of the oscillations and the heterogeneity between cells. This setup also enables studies of cell-to-cell distance and flowrate dependence on cell communication and synchronization.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?