Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Information content with … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Information content with low- vs. high-Tc SQUID arrays in MEG recordings: The case for high-Tc SQUID-based MEG

Artikel i vetenskaplig tidskrift
Författare Justin F. Schneiderman
Publicerad i Journal of Neuroscience Methods
Volym 222
Sidor 42-46
ISSN 0165-0270
Publiceringsår 2014
Publicerad vid Institutionen för neurovetenskap och fysiologi
Sidor 42-46
Språk en
Länkar dx.doi.org/10.1016/j.jneumeth.2013....
Ämnesord Channel capacity, High-Tc SQUID, MEG, Neuroimaging, SQUID-sensor arrays, Total information, analyzer, article, cerebrospinal fluid, electroencephalogram, magnetic field, magnetoencephalography, noise, priority journal, process optimization, recording, sensor, signal noise ratio, superconducting quantum interference device, white noise
Ämneskategorier Neurovetenskaper

Sammanfattning

Background: Magnetoencephalography (MEG) is a method of studying brain activity via recordings of the magnetic field generated by neural activity. Modern MEG systems employ an array of low critical-temperature superconducting quantum interference devices (low-Tc SQUIDs) that surround the head. The geometric distribution of these arrays is optimized by maximizing the information content available to the system in brain activity recordings according to Shannon's theory of noisy channel capacity. New method: Herein, we present a theoretical comparison of the performance of low- and high-Tc SQUID-based multichannel systems in recordings of brain activity. Results: We find a high-Tc SQUID magnetometer-based multichannel system is capable of extracting at least 40% more information than an equivalent low-Tc SQUID system. The results suggest more information can be extracted from high-Tc SQUID MEG recordings (despite higher sensor noise levels than their low-Tc counterparts) because of the closer proximity to neural sources in the brain. Comparison with existing methods: We have duplicated previous results in terms of total information of multichannel low-Tc SQUID arrays for MEG. High-Tc SQUID technology theoretically outperforms its conventional low-Tc counterpart in MEG recordings. Conclusions: A full-head high-Tc SQUID-based MEG system's potential for extraction of more information about neural activity can be used to, e.g., develop better diagnostic and monitoring techniques for brain disease and enhance our understanding of the working human brain. © 2013 Elsevier B.V.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?