Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

A molecular dynamics simu… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

A molecular dynamics simulation investigation of fuel droplet in evolving ambient conditions

Artikel i vetenskaplig tidskrift
Författare H. Yanagihara
I. Stankovic
Fredrik Blomgren
Arne Rosén
I. Sakata
Publicerad i Combustion and Flame
Volym 161
Nummer/häfte 2
Sidor 541-550
ISSN 0010-2180
Publiceringsår 2014
Publicerad vid Institutionen för fysik (GU)
Sidor 541-550
Språk en
Länkar dx.doi.org/10.1016/j.combustflame.2...
Ämnesord Spray, Evaporation, Combustion chemistry, Molecular dynamics, UNITED-ATOM DESCRIPTION, HYDROGEN ABSTRACTION REACTIONS, TRANSFERABLE, POTENTIALS, PHASE-EQUILIBRIA, NUMERICAL SIMULATIONS, COMPUTER-SIMULATION, REACTION-MECHANISMS, VAPORIZATION MODEL, AB-INITIO, EVAPORATION, NTE M, 1992, CHEMICAL ENGINEERING SCIENCE12TH INTERNATIONAL SYMP ON CHEMICAL REACTION ENGINEERING : CHEMICAL REACTION ENGINEERING TODAY ( ISCRE 12 ), JUN 28-JUL 01, 1992, TURIN, ITALY, V47, P2629
Ämneskategorier Kemi

Sammanfattning

Molecular dynamics simulations are applied to model fuel droplet surrounded by air in a spatially and temporally evolving environment. A numerical procedure is developed to include chemical reactions into molecular dynamics. The model reaction is chosen to allow investigation of the position of chemical reactions (gas phase, surface, liquid phase) and the behavior of typical products (alcohols and aldehydes). A liquid droplet at molecular scale is seen as a network of fuel molecules interacting with oxygen, nitrogen, and products of chemical fuel breakdown. A molecule is evaporating when it loosens from the network and diffuses into the air. Naturally, fuel molecules from the gas phase, oxygen and nitrogen molecules can also be adsorbed in the reverse process into the liquid phase. Thus, in the presented simulations the time and length scales of transport processes - oxygen adsorption, diffusion, and fuel evaporation are directly determined by molecular level processes and not by model constants. In addition, using ab initio calculations it is proven that the reaction barriers in liquid and gas phases are similar. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved. RAMZON B, 1989, INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, V32, P1605

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?