Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Osmostress-induced cell v… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Osmostress-induced cell volume loss delays yeast hog1 signaling by limiting diffusion processes and by hog1-specific effects.

Artikel i vetenskaplig tidskrift
Författare Roja Babazadeh
Caroline B. Adiels
Maria Smedh
Elzbieta Petelenz-Kurdziel
Mattias Goksör
Stefan Hohmann
Publicerad i PloS one
Volym 8
Nummer/häfte 11
Sidor e80901
ISSN 1932-6203
Publiceringsår 2013
Publicerad vid Institutionen för kemi och molekylärbiologi
Institutionen för fysik (GU)
Core Facilities, Centre for Cellular Imaging
Sidor e80901
Språk en
Länkar dx.doi.org/10.1371/journal.pone.008...
Ämneskategorier Optisk fysik, Molekylärbiologi, Cell- och molekylärbiologi, Molekylär biofysik, Cellbiologi

Sammanfattning

Signal transmission progresses via a series of transient protein-protein interactions and protein movements, which require diffusion within a cell packed with different molecules. Yeast Hog1, the effector protein kinase of the High Osmolarity Glycerol pathway, translocates transiently from the cytosol to the nucleus during adaptation to high external osmolarity. We followed the dynamics of osmostress-induced cell volume loss and Hog1 nuclear accumulation upon exposure of cells to different NaCl concentrations. While Hog1 nuclear accumulation peaked within five minutes following mild osmotic shock it was delayed up to six-fold under severe stress. The timing of Hog1 nuclear accumulation correlated with the degree of cell volume loss and the cells capacity to recover. Also the nuclear translocation of Msn2, the transcription factor of the general stress response pathway, is delayed upon severe osmotic stress suggesting a general phenomenon. We show by direct measurements that the general diffusion rate of Hog1 in the cytoplasm as well as its rate of nuclear transport are dramatically reduced following severe volume reduction. However, neither Hog1 phosphorylation nor Msn2 nuclear translocation were as much delayed as Hog1 nuclear translocation. Our data provide direct evidence that signaling slows down during cell volume compression, probably as a consequence of molecular crowding. Hence one purpose of osmotic adaptation is to restore optimal diffusion rates for biochemical and cell biological processes. In addition, there may be mechanisms slowing down especially Hog1 nuclear translocation under severe stress in order to prioritize Hog1 cytosolic targets.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?