Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Monte Carlo feature selec… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Monte Carlo feature selection and rule-based models to predict Alzheimer's disease in mild cognitive impairment.

Artikel i vetenskaplig tidskrift
Författare Marcin Kruczyk
Henrik Zetterberg
Oskar Hansson
Sindre Rolstad
Lennart Minthon
Anders Wallin
Kaj Blennow
Jan Komorowski
Mats Gunnar Andersson
Publicerad i Journal of neural transmission (Vienna, Austria : 1996)
Volym 119
Nummer/häfte 7
Sidor 821-31
ISSN 1435-1463
Publiceringsår 2012
Publicerad vid Institutionen för neurovetenskap och fysiologi, sektionen för psykiatri och neurokemi
Sidor 821-31
Språk en
Länkar dx.doi.org/10.1007/s00702-012-0812-...
Ämnesord Aged, Alzheimer Disease, cerebrospinal fluid, diagnosis, psychology, Amyloid beta-Peptides, cerebrospinal fluid, Disease Progression, Female, Humans, Male, Mild Cognitive Impairment, cerebrospinal fluid, psychology, Monte Carlo Method, Neuropsychological Tests, Peptide Fragments, cerebrospinal fluid, Phosphorylation, Predictive Value of Tests, tau Proteins, cerebrospinal fluid
Ämneskategorier Neurokemi

Sammanfattning

The objective of the present study was to evaluate a Monte Carlo feature selection (MCFS) and rough set Rosetta pipeline for generating rule-based models as a tool for comprehensive risk estimates for future Alzheimer's disease (AD) in individual patients with mild cognitive impairment (MCI). Risk estimates were generated on the basis of age, gender, Mini-Mental State Examination scores, apolipoprotein E (APOE) genotype and the cerebrospinal fluid (CSF) biomarkers total tau (T-tau), phospho-tau(181) (P-tau) and the 42 amino acid form of amyloid β (Aβ42) in two sets of longitudinally followed MCI patients (n = 217 in total). The predictive model was created in Rosetta, evaluated with the standard tenfold cross-validation approach and tested on an external set. Features were ranked and selected by the MCFS algorithm. Using the combined pipeline of MCFS and Rosetta, it was possible to predict AD among patients with MCI with an area under the receiver operating characteristics curve of 0.92. Risk estimates were produced for the individual patients and showed good correlation with actual diagnosis in cross validation, and on an external dataset from a new study. Analysis of the importance of attributes showed that the biochemical CSF markers contributed the most to the predictions, and that added value was gained by combining several biochemical markers. Despite a correlation with the biochemical markers, the genetic marker APOE ε4 did not contribute to the predictive power of the model.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?