Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Secondary organic aerosol… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber

Artikel i vetenskaplig tidskrift
Författare E. Z. Nordin
A. C. Eriksson
P. Roldin
P. T. Nilsson
J. E. Carlsson
M. K. Kajos
H. Hellén
C. Wittbom
J. Rissler
J. Löndahl
E. Swietlicki
B. Svenningsson
M. Bohgard
M. Kulmala
Mattias Hallquist
J. Pagels
Publicerad i Atmospheric Chemistry and Physics Discussions
Volym 12
Nummer/häfte 12
Sidor 31725-31765
ISSN 1680-7367
Förlag Copernicus Publications
Publiceringsår 2012
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 31725-31765
Språk en
Länkar dx.doi.org/10.5194/acpd-12-31725-20...
Ämneskategorier Kemi, Analytisk kemi, Fysikalisk kemi, Miljövetenskap, Miljökemi

Sammanfattning

Gasoline vehicles have elevated emissions of volatile organic compounds during cold starts and idling and have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from one Euro II, one Euro III and one Euro IV passenger vehicles were investigated using photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out at atmospherically relevant organic aerosol mass concentrations. The characterization methods included a high resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind urban areas. After 4 h aging the formed SOA was 1–2 orders of magnitude higher than the Primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 4 3) approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6–C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher order aromatic compounds such as C10, C11 light aromatics, naphthalene and methyl-naphthalenes.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?