Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Influence of Ozone and Ra… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Influence of Ozone and Radical Chemistry on Limonene Organic Aerosol Production and Thermal Characteristics

Artikel i vetenskaplig tidskrift
Författare Ravi K. Pathak
Kent Salo
Eva U. Emanuelsson
Cilan Cai
Anna Lutz
Åsa M. Hallquist
Mattias Hallquist
Publicerad i Environmental Science & Technology
Volym 46
Nummer/häfte 21
Sidor 11660-11669
ISSN 0013-936X
Förlag American Chemical Society
Publiceringsår 2012
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 11660-11669
Språk en
Länkar dx.doi.org/10.1021/es301750r
Ämneskategorier Kemi, Analytisk kemi, Fysikalisk kemi, Geovetenskap och miljövetenskap, Klimatforskning, Miljövetenskap, Miljökemi, Organisk kemi

Sammanfattning

Limonene has a strong tendency to form secondary organic aerosol (SOA) in the atmosphere and in indoor environments. Initial oxidation occurs mainly via ozone or OH radical chemistry. We studied the effect of O3 concentrations with or without a OH radical scavenger (2-butanol) on the SOA mass and thermal characteristics using the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures and a volatility tandem differential mobility analyzer. The SOA mass using 15 ppb limonene was strongly dependent on O3 concentrations and the presence of a scavenger. The SOA volatility in the presence of a scavenger decreased with increasing levels of O3, whereas without a scavenger, there was no significant change. A chemical kinetic model was developed to simulate the observations using vapor pressure estimates for compounds that potentially contributed to SOA. The model showed that the product distribution was affected by changes in both OH and ozone concentrations, which partly explained the observed changes in volatility, but was strongly dependent on accurate vapor pressure estimation methods. The model–experiment comparison indicated a need to consider organic peroxides as important SOA constituents. The experimental findings could be explained by secondary condensed-phase ozone chemistry, which competes with OH radicals for the oxidation of primary unsaturated products.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?