Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Large intensities of MeV … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Large intensities of MeV particles and strong charge ejections from laser-induced fusion in ultra-dense deuterium

Paper i proceeding
Författare K. Frans G. Olofson
Andreas Ehn
Joakim Bood
Leif Holmlid
Publicerad i 39th EPS Conference & 16th Int. Congress on Plasma Physics
Sidor P1.105
Publiceringsår 2012
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor P1.105
Språk en
Länkar ocs.ciemat.es/EPSICPP2012ABS/pdf/P1...
Ämneskategorier Plasmafysik, Fusion

Sammanfattning

Ultra-dense deuterium D(-1) is a quantum fluid which is both superfluid and superconductive at room temperature. Laser-induced nuclear fusion D+D in D(-1) has been reported previously [1-3]. Due to the large density of D(-1) at 1029 cm-3, most MeV particles released are collisionally quenched. Even neutrons with 14 MeV from the fusion processes have a calculated mean free path in D(-1) of only 150 nm [3]. Fast neutron detection is thus probably not useful at energy levels below ignition. High-energy particles initiating the fusion processes are released in the D(-1) layer by Coulomb explosions (keV particles) [4] and laser-initiated self-compression (MeV particles) [5]. Most previous studies have used 0.9 J, 7 ns laser pulses. We now describe the results found employing a laser with 1 J, 80 ps pulses at 1064 nm. A fast plastic scintillator measures the time-of-flight of ejected MeV charged particles, an IR diode observes the IR emission, and antennas and current loops observe charged particle ejections from the fusion plasma. Large intensities of MeV particles from D(-1) are observed. Special effects due to the superfluid state of D(-1) are noted.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?