Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Nanofluidic networks base… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Nanofluidic networks based on surfactant membrane technology

Artikel i vetenskaplig tidskrift
Författare A. Karlsson
M. Karlsson
R. Karlsson
Kristin Sott
A. Lundqvist
Michal Tokarz
Owe Orwar
Publicerad i Analytical Chemistry
Volym 75
Nummer/häfte 11
Sidor 2529-37
ISSN 0003-2700
Publiceringsår 2003
Publicerad vid Institutionen för fysik (GU)
Sidor 2529-37
Språk en
Länkar www.ncbi.nlm.nih.gov/entrez/query.f...
Ämnesord Liposomes/*chemistry, Membrane Lipids/*chemistry, Microfluidics/*methods, Nanotechnology/methods, Surface-Active Agents/*chemistry
Ämneskategorier Kemi

Sammanfattning

We explore possibilities to construct nanoscale analytical devices based on lipid membrane technology. As a step toward this goal, we present nanotube-vesicle networks with fluidic control, where the nanotube segments reside at, or very close (<2 microm) to optically transparent surfaces. These nanofluidic systems allow controlled transport as well as LIF detection of single nanoparticles. In the weak-adhesion regime, immobilized vesicles can be approximated as perfect spheres with nanotubes attached at half the height of the vesicle in the axial (z) dimension. In the strong-adhesion regime (relative contact area, Sr* approximately 0.3), nanotubes can be adsorbed to the surface with a distance to the interior of the nanotubes defined by the membrane thickness of approximately 5 nm. Strong surface adsorption restricts nanotube self-organization, enabling networks of nanotubes with arbitrary geometries. We demonstrate LIF detection of single nanoparticles (30-nm-diameter fluorescent beads) inside single nanotubes. Transport of nanoparticles was induced by a surface tension differential applied across nanotubes using a hydrodynamic injection protocol. Controlled transport in nanotubes together with LIF detection enables construction of nanoscale fluidic devices with potential to operate with single molecules. This opens up possibilities to construct analytical platforms with characteristic length scales and volume orders of magnitudes smaller than employed in traditional microfluidic devices.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?