Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

A microfluidic device for… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning

Artikel i vetenskaplig tidskrift
Författare Emma Eriksson
Kristin Sott
Fredrik Lundqvist
Martin Sveningsson
Jan Scrimgeour
Dag Hanstorp
Mattias Goksör
Annette Graneli
Publicerad i Lab Chip
Volym 10
Nummer/häfte 5
Sidor 617-625
ISSN 1473-0197
Publiceringsår 2010
Publicerad vid Institutionen för fysik (GU)
Institutionen för cell- och molekylärbiologi, mikrobiologi
Sidor 617-625
Språk en
Länkar dx.doi.org/10.1039/B913587A
Ämneskategorier Annan fysik, Biologisk fysik

Sammanfattning

Cells naturally exist in a dynamic chemical environment, and therefore it is necessary to study cell behaviour under dynamic stimulation conditions in order to understand the signalling transduction pathways regulating the cellular response. However, until recently, experiments looking at the cellular response to chemical stimuli have mainly been performed by adding a stress substance to a population of cells and thus only varying the magnitude of the stress. In this paper we demonstrate an experimental method enabling acquisition of data on the behaviour of single cells upon reversible environmental perturbations, where microfluidics is combined with optical tweezers and fluorescence microscopy. The cells are individually selected and positioned in the measurement region on the bottom surface of the microfluidic device using optical tweezers. The optical tweezers thus enable precise control of the cell density as well as the total number of cells within the measurement region. Consequently, the number of cells in each experiment can be optimized while clusters of cells, that render subsequent image analysis more difficult, can be avoided. The microfluidic device is modelled and demonstrated to enable reliable changes between two different media in less than 2 s. The experimental method is tested by following the cycling of GFP-tagged proteins (Mig1 and Msn2, respectively) between the cytosol and the nucleus in Saccharomyces cerevisiae upon changes in glucose availability.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?