Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Comparison of electron do… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.

Artikel i vetenskaplig tidskrift
Författare Helena Uusijärvi
Nicolas Chouin
Peter Bernhardt
Ludovic Ferrer
Manuel Bardiès
Eva Forssell-Aronsson
Publicerad i Cancer biotherapy & radiopharmaceuticals
Volym 24
Nummer/häfte 4
Sidor 461-7
ISSN 1557-8852
Publiceringsår 2009
Publicerad vid Institutionen för kliniska vetenskaper, Avdelningen för radiofysik
Institutionen för kliniska vetenskaper
Sidor 461-7
Språk en
Länkar dx.doi.org/10.1089/cbr.2008.0573
Ämnesord Computer Simulation, Electron Transport, Electrons, Monte Carlo Method, Neoplasms, radionuclide imaging, radiotherapy, Radiation Dosage, Radioisotopes, chemistry, Radiometry, methods, Radiopharmaceuticals, chemistry, Water, chemistry
Ämneskategorier Radiofysik

Sammanfattning

Point kernels describe the energy deposited at a certain distance from an isotropic point source and are useful for nuclear medicine dosimetry. They can be used for absorbed-dose calculations for sources of various shapes and are also a useful tool when comparing different Monte Carlo (MC) codes. The aim of this study was to compare point kernels calculated by using the mixed MC code, PENELOPE (v. 2006), with point kernels calculated by using the condensed-history MC codes, ETRAN, GEANT4 (v. 8.2), and MCNPX (v. 2.5.0). Point kernels for electrons with initial energies of 10, 100, 500, and 1 MeV were simulated with PENELOPE. Spherical shells were placed around an isotropic point source at distances from 0 to 1.2 times the continuous-slowing-down-approximation range (R(CSDA)). Detailed (event-by-event) simulations were performed for electrons with initial energies of less than 1 MeV. For 1-MeV electrons, multiple scattering was included for energy losses less than 10 keV. Energy losses greater than 10 keV were simulated in a detailed way. The point kernels generated were used to calculate cellular S-values for monoenergetic electron sources. The point kernels obtained by using PENELOPE and ETRAN were also used to calculate cellular S-values for the high-energy beta-emitter, 90Y, the medium-energy beta-emitter, 177Lu, and the low-energy electron emitter, 103mRh. These S-values were also compared with the Medical Internal Radiation Dose (MIRD) cellular S-values. The greatest differences between the point kernels (mean difference calculated for distances, <0.9 r/R(CSDA)), using PENELOPE and those from ETRAN, GEANT4, and MCNPX, were 3.6%, 6.2%, and 14%, respectively. The greatest difference between the cellular S-values for monoenergetic electrons was 1.4%, 2.5%, and 6.9% for ETRAN, GEANT4, and MCNPX, respectively, compared to PENELOPE, if omitting the S-values when the activity was distributed on the cell surface for 10-keV electrons. The largest difference between the cellular S-values for the radionuclides, between PENELOPE and ETRAN, was seen for 177Lu (1.2%). There were large differences between the MIRD cellular S-values and those obtained from PENELOPE: up to 420% for monoenergetic electrons and <22% for the radionuclides, with the largest difference for 103mRh. In conclusion, differences were found between the point kernels generated by different MC codes, but these differences decreased when cellular S-values were calculated, and decreased even further when the energy spectra of the radionuclides were taken into consideration.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?