Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Ultra-dense deuterium: A … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Ultra-dense deuterium: A possible nuclear fuel for inertial confinement fusion (ICF)

Artikel i vetenskaplig tidskrift
Författare Patrik U Andersson
Leif Holmlid
Publicerad i Physics Letters A
Volym 373
Sidor 3067-3070
Publiceringsår 2009
Publicerad vid Institutionen för kemi
Sidor 3067-3070
Språk en
Länkar www.sciencedirect.com.proxy.lib.cha...
Ämneskategorier Plasmafysik med fusion

Sammanfattning

The ejection of deuterons with kinetic energy release (KER) of 630 eV was proved recently by measuring the laser-induced ion time-of-flight (TOF-MS) with two different detectors at different distances [S. Badiei, P.U. Andersson, L. Holmlid, Int. J. Mass Spectrom. 282 (2009) 70]. Realizing that the only possible energy release mechanism is Coulomb explosions, the D–D distance in the ultra-dense deuterium was determined to be constant at 2.3 pm. Using a long TOF-MS path now gives improved resolution. We show the strong effect of collisions in the ultra-dense material, and demonstrate that the kinetic energy of the ions increases with laser pulse power but that the number of ions formed is independent of the laser pulse power. This indicates special properties of the material. We also show that the two forms of condensed deuterium D(1) and D(−1) can be observed simultaneously as well resolved mass spectra of different forms. No intermediate bond lengths are observed. The two forms of deuterium are stable and well separated in bond length. We suggest that they switch rapidly back and forth as predicted by theory. A loosely built form with planar clusters of D(1) is observed here to be related to D(−1) formation.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?