Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Anomalous behaviour of su… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Anomalous behaviour of supercooled water and its implication for protein dymamics

Kapitel i bok
Författare Jan Swenson
Helén Jansson
Rikard Bergman
Publicerad i Lecture Notes in Physics; Aspects of Physical Biology: Biological water, Protein solutions,Transport and Replication
Sidor 23-42
ISBN 978-3-540-78764-8
Förlag Springer-Verlag Berlin
Förlagsort Berlin
Publiceringsår 2008
Publicerad vid Svenskt NMR-centrum vid Göteborgs universitet
Sidor 23-42
Språk en
Ämnesord GLASS-LIQUID TRANSITION; CONFINED WATER; NEUTRON-SCATTERING; DIELECTRIC-SPECTROSCOPY; HYDROPHILIC SURFACES; VERMICULITE CLAY; BIOLOGICAL WATER; HYDRATION WATER; VYCOR GLASS; TIME-DOMAIN REFLECTOMETRY
Ämneskategorier Biologisk fysik

Sammanfattning

Water is the foundation of life, and without it life as we know it would not exist. An organism consists to a large extent of water and, apart from a few larger reservoirs, almost all water in a living organism is closely associated with surfaces of biomolecules of different kinds. This so-called biological water is known to affect the dynamics of biomaterials such as proteins, which. in turn is crucial for its functions. However, how and why the surrounding environment affects the dynamics of proteins and other biomolecules is still not fully understood. Recently, it was suggested [Fenimore et al. PNAS 2004, 101 14408] that local and more global protein motions are slaved (or driven) by the local beta-relaxation and the more large-scale cooperative a-relaxation in the surrounding solvent, respectively. In this chapter we present results from dielectric measurements on myoglobin in water-glycerol mixtures that support this slaving idea. Moreover, we show how confined supercooled water changes its dynamical behaviour from a low temperature Arrhenius behaviour to a high temperature non-Arrhenius behaviour at a certain temperature (around 200 K), and then we discuss likely explanations for the crossover and its consequence for protein dynamics.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?