Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

A minimal-variable symple… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

A minimal-variable symplectic method for isospectral flows

Artikel i vetenskaplig tidskrift
Författare Milo Viviani
Publicerad i BIT Numerical Mathematics
ISSN 0006-3835
Publiceringsår 2019
Publicerad vid Institutionen för matematiska vetenskaper
Språk en
Länkar dx.doi.org/10.1007/s10543-019-00792...
Ämneskategorier Beräkningsmatematik

Sammanfattning

Isospectral flows are abundant in mathematical physics; the rigid body, the the Toda lattice, the Brockett flow, the Heisenberg spin chain, and point vortex dynamics, to mention but a few. Their connection on the one hand with integrable systems and, on the other, with Lie–Poisson systems motivates the research for optimal numerical schemes to solve them. Several works about numerical methods to integrate isospectral flows have produced a large varieties of solutions to this problem. However, many of these algorithms are not intrinsically defined in the space where the equations take place and/or rely on computationally heavy transformations. In the literature, only few examples of numerical methods avoiding these issues are known, for instance, the spherical midpoint method on so(3). In this paper we introduce a new minimal-variable, second order, numerical integrator for isospectral flows intrinsically defined on quadratic Lie algebras and symmetric matrices. The algorithm is isospectral for general isospectral flows and Lie–Poisson preserving when the isospectral flow is Hamiltonian. The simplicity of the scheme, together with its structure-preserving properties, makes it a competitive alternative to those already present in literature.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?