Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Chemometric Strategies fo… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Chemometric Strategies for Sensitive Annotation and Validation of Anatomical Regions of Interest in Complex Imaging Mass Spectrometry Data.

Artikel i vetenskaplig tidskrift
Författare Patrick M. Wehrli
Wojciech Michno
Kaj Blennow
Henrik Zetterberg
Jörg Hanrieder
Publicerad i Journal of the American Society for Mass Spectrometry
Volym 30
Nummer/häfte 11
Sidor 2278-2288
ISSN 1044-0305
Publiceringsår 2019
Publicerad vid Institutionen för neurovetenskap och fysiologi, sektionen för psykiatri och neurokemi
Sidor 2278-2288
Språk en
Länkar dx.doi.org/10.1007/s13361-019-02327...
www.ncbi.nlm.nih.gov/entrez/query.f...
Ämneskategorier Analytisk kemi

Sammanfattning

Imaging mass spectrometry (IMS) is a promising new chemical imaging modality that generates a large body of complex imaging data, which in turn can be approached using multivariate analysis approaches for image analysis and segmentation. Processing IMS raw data is critically important for proper data interpretation and has significant effects on the outcome of data analysis, in particular statistical modeling. Commonly, data processing methods are chosen based on rational motivations rather than comparative metrics, though no quantitative measures to assess and compare processing options have been suggested. We here present a data processing and analysis pipeline for IMS data interrogation, processing and ROI annotation, segmentation, and validation. This workflow includes (1) objective evaluation of processing methods for IMS datasets based on multivariate analysis using PCA. This was then followed by (2) ROI annotation and classification through region-based active contours (AC) segmentation based on the PCA component scores matrix. This provided class information for subsequent (3) OPLS-DA modeling to evaluate IMS data processing based on the quality metrics of their respective multivariate models and for robust quantification of ROI-specific signal localization. This workflow provides an unbiased strategy for sensitive annotation of anatomical regions of interest combined with quantitative comparison of processing procedures for multivariate analysis allowing robust ROI annotation and quantification of the associated molecular histology.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?