Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Searching for optimal mod… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Searching for optimal models: Comparing two encoding approaches

Artikel i vetenskaplig tidskrift
Författare Stefan John
Alexandru Burdusel
Robert Bill
Daniel Strüber
Gabriele Taentzer
Steffen Zschaler
Manuel Wimmer
Publicerad i Journal of Object Technology
Volym 18
Nummer/häfte 3
Sidor 1-22
ISSN 1660-1769
Publiceringsår 2019
Publicerad vid Institutionen för data- och informationsteknik (GU)
Sidor 1-22
Språk en
Länkar dx.doi.org/10.5381/jot.2019.18.3.a6
Ämnesord Model-driven Engineering Search-based Software Engineering Optimization Encoding Comparative evaluation
Ämneskategorier Programvaruteknik

Sammanfattning

Search-Based Software Engineering (SBSE) is about solving software development problems by formulating them as optimization problems. In the last years, combining SBSE and Model-Driven Engineering (MDE), where models and model transformations are treated as key artifacts in the development of complex systems, has become increasingly popular. While search-based techniques have often successfully been applied to tackle MDE problems, a recent line of research investigates how a model-driven design can make optimization more easily accessible to a wider audience. In previous model-driven optimization efforts, a major design decision concerns the way in which solutions are encoded. Two main options have been explored: a model-based encoding representing candidate solutions as models, and a rule-based encoding representing them as sequences of transformation rule applications. While both encodings have been applied to different use cases, no study has yet compared them systematically. To close this gap, we evaluate both approaches on a common set of optimization problems, investigating their impact on the optimization performance. Additionally, we discuss their differences, strengths, and weaknesses laying the foundation for a knowledgeable choice of the right encoding for the right problem.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?