Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Existence of static solut… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

# Existence of static solutions of the Einstein-vlasov-maxwell system and the thin shell limit

Artikel i vetenskaplig tidskrift
Författare Maximilian Thaller SIAM Journal on Mathematical Analysis 51 3 2231-2260 0036-1410 2019 Institutionen för matematiska vetenskaper 2231-2260 en dx.doi.org/10.1137/18M1179377 Buchdahl inequality, Einstein equations, Einstein-Vlasov-Maxwell system, static solutions, thin shell limit, Charged particles, Shells (structures), Vlasov equation, Thin shells, Vlasov-Maxwell system, Maxwell equations Matematik

## Sammanfattning

In this article the static Einstein-Vlasov-Maxwell system is considered in spherical symmetry. This system describes an ensemble of charged particles interacting by general relativistic gravity and Coulomb forces. First, a proof for local existence of solutions around the center of symmetry is given. Then, by virtue of a perturbation argument, global existence is established for small particle charges. The method of proof yields solutions with matter quantities of bounded support-among other classes, shells of charged Vlasov matter. As a further result, the limit of infinitesimally thin shells as solution of the Einstein-Vlasov-Maxwell system is proven to exist for arbitrary values of the particle charge parameter. In this limit the inequality which has been obtained by Andrèasson in [Comm. Math. Phys., 288 (2009), pp. 715-730], and which bounds the mass-toradius ratio by a constant and the charge-to-radius ratio, becomes sharp. However, in this limit the charge terms in the inequality are shown to tend to zero. © 2019 SIAM.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?