Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Bayesian data analysis in… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Bayesian data analysis in empirical software engineering research

Artikel i vetenskaplig tidskrift
Författare Carlo A. Furia
Robert Feldt
Richard Torkar
Publicerad i IEEE Transactions on Software Engineering
ISSN 0098-5589
Publiceringsår 2019
Publicerad vid Institutionen för data- och informationsteknik, Software Engineering (GU)
Språk en
Länkar https://arxiv.org/pdf/1811.05422.pd...
Ämnesord Bayesian data analysis, statistical analysis, statistical hypothesis testing, empirical software engineering.
Ämneskategorier Programvaruteknik

Sammanfattning

Statistics comes in two main flavors: frequentist and Bayesian. For historical and technical reasons, frequentist statistics have traditionally dominated empirical data analysis and certainly remain prevalent in empirical software engineering. This situation is unfortunate because frequentist statistics suffer from a number of shortcomings—such as lack of flexibility and results that are unintuitive and hard to interpret—that curtail their effectiveness when dealing with the heterogeneous data that is increasingly available for empirical analysis of software engineering practice. In this paper, we pinpoint these shortcomings and present Bayesian data analysis techniques that provide tangible benefits—as they can provide clearer results that are simultaneously robust and nuanced. After a short, high-level introduction to the basic tools of Bayesian statistics, we present the reanalysis of two empirical studies on the effectiveness of automatically generated tests and the performance of programming languages. By contrasting the original frequentist analyses with our new Bayesian analyses, we demonstrate the concrete advantages of the latter. To conclude we advocate a more prominent role for Bayesian statistical techniques in empirical software engineering research and practice.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?