Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Effect of fluid inertia o… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence

Artikel i vetenskaplig tidskrift
Författare Kristian Gustavsson
M. Z. Sheikh
D. Lopez
A. Naso
A. Pumir
Bernhard Mehlig
Publicerad i New Journal of Physics
Volym 21
ISSN 1367-2630
Publiceringsår 2019
Publicerad vid Institutionen för fysik (GU)
Språk en
Länkar dx.doi.org/10.1088/1367-2630/ab3062
Ämnesord turbulence, non-spherical particles, angular dynamics, settling, ice crystals in cumulus clouds, homogeneous turbulence, ellipsoidal particles, aerosol-particles, heavy-particles, collision rate, motion, velocity, flow, statistics, dynamics, Physics
Ämneskategorier Fysik


We study the angular dynamics of small non-spherical particles settling in a turbulent flow, such as ice crystals in clouds, aggregates of organic material in the oceans, or fibres settling in turbulent pipe flow. Most solid particles encountered in Nature are not spherical, and their orientations affect their settling speeds, as well as their collision and aggregation rates in suspensions. Whereas the random action of turbulent eddies favours an isotropic distribution of orientations, gravitational settling breaks the rotational symmetry. The precise nature of the symmetry breaking, however, is subtle. We demonstrate here that the fluid-inertia torque plays a dominant role in the problem. As a consequence rod-like particles tend to settle in turbulence with horizontal orientation, the more so the larger the settling number Sv (a dimensionless measure of the settling speed). For large Sv we determine the fluctuations around this preferential horizontal orientation for prolate particles with arbitrary aspect ratios, assuming small Stokes number St (a dimensionless measure of particle inertia). Our theory is based on a statistical model representing the turbulent velocity fluctuations by Gaussian random functions. This overdamped theory predicts that the orientation distribution is very narrow at large Sv, with a variance proportional to Sv(-4). By considering the role of particle inertia, we analyse the limitations of the overdamped theory, and determine its range of applicability. Our predictions are in excellent agreement with numerical simulations of simplified models of turbulent flows. Finally we contrast our results with those of an alternative theory predicting that the orientation variance is proportional to Sv(-2) at large Sv.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?