Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Effects of measurements o… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Effects of measurements on correlations of software code metrics

Artikel i vetenskaplig tidskrift
Författare Abdullah Al Mamun
Christian Berger
J. Hansson
Publicerad i Empirical Software Engineering
Volym 24
Nummer/häfte 4
Sidor 2764-2818
ISSN 1382-3256
Publiceringsår 2019
Publicerad vid Institutionen för data- och informationsteknik (GU)
Institutionen för data- och informationsteknik, datavetenskap (GU)
Sidor 2764-2818
Språk en
Länkar dx.doi.org/10.1007/s10664-019-09714...
Ämnesord Software code metrics, Measurement effects on correlations, Collinearity, Software engineering, object-oriented software, Computer Science, ylor r, 1990, journal of diagnostic medical sonography, v6, p35
Ämneskategorier Data- och informationsvetenskap

Sammanfattning

ContextSoftware metrics play a significant role in many areas in the life-cycle of software including forecasting defects and foretelling stories regarding maintenance, cost, etc. through predictive analysis. Many studies have found code metrics correlated to each other at such a high level that such correlated code metrics are considered redundant, which implies it is enough to keep track of a single metric from a list of highly correlated metrics.ObjectiveSoftware is developed incrementally over a period. Traditionally, code metrics are measured cumulatively as cumulative sum or running sum. When a code metric is measured based on the values from individual revisions or commits without consolidating values from past revisions, indicating the natural development of software, this study identifies such a type of measure as organic. Density and average are two other ways of measuring metrics. This empirical study focuses on whether measurement types influence correlations of code metrics.MethodTo investigate the objective, this empirical study has collected 24 code metrics classified into four categories, according to the measurement types of the metrics, from 11,874 software revisions (i.e., commits) of 21 open source projects from eight well-known organizations. Kendall's tau-B is used for computing correlations. To determine whether there is a significant difference between cumulative and organic metrics, Mann-Whitney U test, Wilcoxon signed rank test, and paired-samples sign test are performed.ResultsThe cumulative metrics are found to be highly correlated to each other with an average coefficient of 0.79. For corresponding organic metrics, it is 0.49. When individual correlation coefficients between these two measure types are compared, correlations between organic metrics are found to be significantly lower (with p <0.01) than cumulative metrics. Our results indicate that the cumulative nature of metrics makes them highly correlated, implying cumulative measurement is a major source of collinearity between cumulative metrics. Another interesting observation is that correlations between metrics from different categories are weak.ConclusionsResults of this study reveal that measurement types may have a significant impact on the correlations of code metrics and that transforming metrics into a different type can give us metrics with low collinearity. These findings provide us a simple understanding how feature transformation to a different measurement type can produce new non-collinear input features for predictive models.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?