Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Boundaries, spectral trip… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Boundaries, spectral triples and K-homology

Artikel i vetenskaplig tidskrift
Författare I. Forsyth
Magnus Goffeng
B. Mesland
A. Rennie
Publicerad i Journal of Noncommutative Geometry
Volym 13
Nummer/häfte 2
Sidor 407-472
ISSN 1661-6952
Publiceringsår 2019
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 407-472
Språk en
Länkar dx.doi.org/10.4171/jncg/331
Ämnesord Spectral triple, manifold-with-boundary, K-homology, positive scalar curvature, higher rho-invariants, index theory, operators, manifolds, signature, algebras, Mathematics, Physics, eeger j, 1983, journal of differential geometry, v18, p575
Ämneskategorier Matematik

Sammanfattning

This paper extends the notion of a spectral triple to a relative spectral triple, an unbounded analogue of a relative Fredholm module for an ideal J (sic) A. Examples include manifolds with boundary, manifolds with conical singularities, dimension drop algebras, theta-deformations and Cuntz-Pimsner algebras of vector bundles. The bounded transform of a relative spectral triple is a relative Fredholm module, making the image of a relative spectral triple under the boundary mapping in K-homology easy to compute. We introduce an additional operator called a Clifford normal with which a relative spectral triple can be doubled into a spectral triple. The Clifford normal also provides a boundary Hilbert space, a representation of the quotient algebra, a boundary Dirac operator and an analogue of the Calderon projection. In the examples this data does assemble to give a boundary spectral triple, though we can not prove this in general. When we do obtain a boundary spectral triple, we provide sufficient conditions for the boundary triple to represent the K-homological boundary. Thus we abstract the proof of Baum- Douglas-Taylor's "boundary of Dirac is Dirac on the boundary" theorem into the realm of non-commutative geometry.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?