Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Identification of single … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Identification of single nucleotide variants using position-specific error estimation in deep sequencing data.

Artikel i vetenskaplig tidskrift
Författare Dimitrios Kleftogiannis
Marco Punta
Anuradha Jayaram
Shahneen Sandhu
Stephen Q Wong
Delila Gasi Tandefelt
Vincenza Conteduca
Daniel Wetterskog
Gerhardt Attard
Stefano Lise
Publicerad i BMC medical genomics
Volym 12
Nummer/häfte 1
Sidor 115
ISSN 1755-8794
Publiceringsår 2019
Publicerad vid Sahlgrenska Cancer Center
Institutionen för kliniska vetenskaper, Avdelningen för urologi
Sidor 115
Språk en
Länkar dx.doi.org/10.1186/s12920-019-0557-...
www.ncbi.nlm.nih.gov/entrez/query.f...
Ämnesord Cancer genomics, Deep sequencing, Error correction, Ion torrent, Liquid biopsies, Next generation sequencing (NGS), Targeted sequencing, Variant calling
Ämneskategorier Bioinformatik (beräkningsbiologi), Cancer och onkologi

Sammanfattning

Targeted deep sequencing is a highly effective technology to identify known and novel single nucleotide variants (SNVs) with many applications in translational medicine, disease monitoring and cancer profiling. However, identification of SNVs using deep sequencing data is a challenging computational problem as different sequencing artifacts limit the analytical sensitivity of SNV detection, especially at low variant allele frequencies (VAFs).To address the problem of relatively high noise levels in amplicon-based deep sequencing data (e.g. with the Ion AmpliSeq technology) in the context of SNV calling, we have developed a new bioinformatics tool called AmpliSolve. AmpliSolve uses a set of normal samples to model position-specific, strand-specific and nucleotide-specific background artifacts (noise), and deploys a Poisson model-based statistical framework for SNV detection.Our tests on both synthetic and real data indicate that AmpliSolve achieves a good trade-off between precision and sensitivity, even at VAF below 5% and as low as 1%. We further validate AmpliSolve by applying it to the detection of SNVs in 96 circulating tumor DNA samples at three clinically relevant genomic positions and compare the results to digital droplet PCR experiments.AmpliSolve is a new tool for in-silico estimation of background noise and for detection of low frequency SNVs in targeted deep sequencing data. Although AmpliSolve has been specifically designed for and tested on amplicon-based libraries sequenced with the Ion Torrent platform it can, in principle, be applied to other sequencing platforms as well. AmpliSolve is freely available at https://github.com/dkleftogi/AmpliSolve .

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?