Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Populations with interact… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Populations with interaction and environmental dependence: From few, (almost) independent, members into deterministic evolution of high densities

Artikel i vetenskaplig tidskrift
Författare P. Chigansky
Peter Jagers
F. C. Klebaner
Publicerad i Stochastic Models
Volym 35
Nummer/häfte 2
Sidor 108-118
ISSN 1532-6349
Publiceringsår 2019
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 108-118
Språk en
Länkar dx.doi.org/10.1080/15326349.2019.15...
Ämnesord Branching processes, carrying capacity, density dependence, population dynamics, threshold size, Mathematics
Ämneskategorier Matematik

Sammanfattning

Many populations, e.g. not only of cells, bacteria, viruses, or replicating DNA molecules, but also of species invading a habitat, or physical systems of elements generating new elements, start small, from a few lndividuals, and grow large into a noticeable fraction of the environmental carrying capacity K or some corresponding regulating or system scale unit. Typically, the elements of the initiating, sparse set will not be hampering each other and their number will grow from Z(0) = z(0) in a branching process or Malthusian like, roughly exponential fashion, , where Z(t) is the size at discrete time , a>1 is the offspring mean per individual (at the low starting density of elements, and large K), and W a sum of z(0) i.i.d. random variables. It will, thus, become detectable (i.e. of the same order as K) only after around generations, when its density will tend to be strictly positive. Typically, this entity will be random, even if the very beginning was not at all stochastic, as indicated by lower case z(0), due to variations during the early development. However, from that time onwards, law of large numbers effects will render the process deterministic, though inititiated by the random density at time log K, expressed through the variable W. Thus, W acts both as a random veil concealing the start and a stochastic initial value for later, deterministic population density development. We make such arguments precise, studying general density and also system-size dependent, processes, as . As an intrinsic size parameter, K may also be chosen to be the time unit. The fundamental ideas are to couple the initial system to a branching process and to show that late densities develop very much like iterates of a conditional expectation operator. The random veil, hiding the start, was first observed in the very concrete special case of finding the initial copy number in quantitative PCR under Michaelis-Menten enzyme kinetics, where the initial individual replication variance is nil if and only if the efficiency is one, i.e. all molecules replicate.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?