Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Towards Structured Evalua… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Towards Structured Evaluation of Deep Neural Network Supervisors

Bok
Författare J. Henriksson
Christian Berger
M. Borg
L. Tornberg
C. Englund
S. R. Sathyamoorthy
S. Ursing
Ieee, Ieee,
ISBN 978-1-7281-0492-8
Publiceringsår 2019
Publicerad vid Institutionen för data- och informationsteknik (GU)
Språk en
Länkar dx.doi.org/10.1109/AITest.2019.00-1...
Ämnesord deep neural networks, robustness, out-of-distribution, supervisor, automotive perception, OCEEDINGS7th Industrial Conference on Data Mining, JUL 14-18, 2007, Leipzig, GERMANY, V4597, OCESSING (WCSP)7th International Conference on Wireless Communications and Signal Processing
Ämneskategorier Programvaruteknik

Sammanfattning

Deep Neural Networks (DNN) have improved the quality of several non-safety related products in the past years. However, before DNNs should be deployed to safety-critical applications, their robustness needs to be systematically analyzed. A common challenge for DNNs occurs when input is dissimilar to the training set, which might lead to high confidence predictions despite proper knowledge of the input. Several previous studies have proposed to complement DNNs with a supervisor that detects when inputs are outside the scope of the network. Most of these supervisors, however, are developed and tested for a selected scenario using a specific performance metric. In this work, we emphasize the need to assess and compare the performance of supervisors in a structured way. We present a framework constituted by four datasets organized in six test cases combined with seven evaluation metrics. The test cases provide varying complexity and include data from publicly available sources as well as a novel dataset consisting of images from simulated driving scenarios. The latter we plan to make publicly available. Our framework can be used to support DNN supervisor evaluation, which in turn could be used to motive development, validation, and deployment of DNNs in safety-critical applications.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?