Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

An integrated approach to… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

An integrated approach to processing WHO-2016 verbal autopsy data: the InterVA-5 model

Artikel i vetenskaplig tidskrift
Författare P. Byass
Laith Hussain-Alkhateeb
L. D'Ambruoso
S. Clark
J. Davies
E. Fottrell
J. Bird
C. Kabudula
S. Tollman
K. Kahn
Linus Schiöler
Max Petzold
Publicerad i BMC Med
Volym 17
ISSN 1741-7015
Publiceringsår 2019
Publicerad vid Institutionen för medicin, avdelningen för samhällsmedicin och folkhälsa, enheten för arbets-och miljömedicin
Institutionen för medicin, avdelningen för samhällsmedicin och folkhälsa, enheten för hälsometri
Språk en
Länkar dx.doi.org/10.1186/s12916-019-1333-...
Ämnesord Verbal autopsy, Mortality surveillance, Civil registration, InterVA, Cause of death, World Health Organization, General & Internal Medicine
Ämneskategorier Hälsovetenskaper

Sammanfattning

Background: Verbal autopsy is an increasingly important methodology for assigning causes to otherwise uncertified deaths, which amount to around 50% of global mortality and cause much uncertainty for health planning. The World Health Organization sets international standards for the structure of verbal autopsy interviews and for cause categories that can reasonably be derived from verbal autopsy data. In addition, computer models are needed to efficiently process large quantities of verbal autopsy interviews to assign causes of death in a standardised manner. Here, we present the InterVA-5 model, developed to align with the WHO-2016 verbal autopsy standard. This is a harmonising model that can process input data from WHO-2016, as well as earlier WHO-2012 and Tariff-2 formats, to generate standardised cause-specific mortality profiles for diverse contexts. The software development involved building on the earlier InterVA-4 model, and the expanded knowledge base required for InterVA-5 was informed by analyses from a training dataset drawn from the Population Health Metrics Research Collaboration verbal autopsy reference dataset, as well as expert input. Results: The new model was evaluated against a test dataset of 6130 cases from the Population Health Metrics Research Collaboration and 4009 cases from the Afghanistan National Mortality Survey dataset. Both of these sources contained around three quarters of the input items from the WHO-2016, WHO-2012 and Tariff-2 formats. Cause-specific mortality fractions across all applicable WHO cause categories were compared between causes assigned in participating tertiary hospitals and InterVA-5 in the test dataset, with concordance correlation coefficients of 0.92 for children and 0.86 for adults. The InterVA-5 model's capacity to handle different input formats was evaluated in the Afghanistan dataset, with concordance correlation coefficients of 0.97 and 0.96 between the WHO-2016 and the WHO-2012 format for children and adults respectively, and 0.92 and 0.87 between the WHO-2016 and the Tariff-2 format respectively. Conclusions: Despite the inherent difficulties of determining "truth" in assigning cause of death, these findings suggest that the InterVA-5 model performs well and succeeds in harmonising across a range of input formats. As more primary data collected under WHO-2016 become available, it is likely that InterVA-5 will undergo minor re-versioning in the light of practical experience. The model is an important resource for measuring and evaluating cause-specific mortality globally.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?