Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

In Vivo Human Cartilage F… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink

Artikel i vetenskaplig tidskrift
Författare Peter Apelgren
E. Karabulut
Matteo Amoroso
A. Mantas
H. M. Avila
Lars Kölby
T. Kondo
G. Toriz
P. Gatenholm
Publicerad i Acs Biomaterials Science & Engineering
Volym 5
Nummer/häfte 5
Sidor 2482-2490
ISSN 2373-9878
Publiceringsår 2019
Publicerad vid Institutionen för kliniska vetenskaper, Avdelningen för plastikkirurgi
Sidor 2482-2490
Språk en
Länkar dx.doi.org/10.1021/acsbiomaterials....
Ämnesord 3D-bioprinting, bacterial nanocellulose, aqueous counter collision, bioinks, neocartilage formation, mesenchymal stem-cells, cellulose nanofibers, acetobacter-xylinum, microbial cellulose, potential scaffold, implant material, blood-vessels, biocompatibility, chondrocytes, vascularizatio
Ämneskategorier Biomaterialvetenskap

Sammanfattning

Bacterial nanocellulose (BNC) is a 3D network of nanofibrils exhibiting excellent biocompatibility. Here, we present the aqueous counter collision (ACC) method of BNC disassembly to create bioink with suitable properties for cartilage-specific 3D-bioprinting. BNC was disentangled by ACC, and fibril characteristics were analyzed. Bioink printing fidelity and shear-thinning properties were evaluated. Cell-laden bioprinted grid constructs (5 X 5 X 1 mm(3)) containing human nasal chondrocytes (10 M mL(-1)) were implanted in nude mice and explanted after 30 and 60 days. Both ACC and hydrolysis resulted in significantly reduced fiber lengths, with ACC resulting in longer fibrils and fewer negative charges relative to hydrolysis. Moreover, ACC-BNC bioink showed outstanding printability, postprinting mechanical stability, and structural integrity. In vivo, cell-laden structures were rapidly integrated, maintained structural integrity, and showed chondrocyte proliferation, with 32.8 +/- 13.8 cells per mm(2) observed after 30 days and 85.6 +/- 30.0 cells per mm(2) at day 60 (p = 0.002). Furthermore, a full-thickness skin graft was attached and integrated completely on top of the 3D-bioprinted construct. The novel ACC disentanglement technique makes BNC biomaterial highly suitable for 3D-bioprinting and clinical translation, suggesting cell-laden 3D-bioprinted ACC-BNC as a promising solution for cartilage repair.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?