Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

BEAST 2.5: An advanced so… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis

Artikel i vetenskaplig tidskrift
Författare R. Bouckaert
T. G. Vaughan
J. Barido-Sottani
S. Duchene
M. Fourment
A. Gavryushkina
J. Heled
Graham Jones
D. Kuhnert
N. De Maio
M. Matschiner
F. K. Mendes
N. F. Muller
H. A. Ogilvie
L. du Plessis
A. Popinga
A. Rambaut
D. Rasmussen
I. Siveroni
M. A. Suchard
C. H. Wu
D. Xie
C. Zhang
T. Stadler
A. J. Drummond
Publicerad i Plos Computational Biology
Volym 15
Nummer/häfte 4
Sidor 28
Publiceringsår 2019
Publicerad vid Institutionen för biologi och miljövetenskap
Sidor 28
Språk en
Länkar dx.doi.org/10.1371/journal.pcbi.100...
Ämnesord nucleotide substitution, likelihood-estimation, species trees, gene, trees, inference, models, time, coalescent, speciation, radiation
Ämneskategorier Bioinformatik och systembiologi

Sammanfattning

Elaboration of Bayesian phylogenetic inference methods has continued at pace in recent years with major new advances in nearly all aspects of the joint modelling of evolutionary data. It is increasingly appreciated that some evolutionary questions can only be adequately answered by combining evidence from multiple independent sources of data, including genome sequences, sampling dates, phenotypic data, radiocarbon dates, fossil occurrences, and biogeographic range information among others. Including all relevant data into a single joint model is very challenging both conceptually and computationally. Advanced computational software packages that allow robust development of compatible (sub-)models which can be composed into a full model hierarchy have played a key role in these developments. Developing such software frameworks is increasingly a major scientific activity in its own right, and comes with specific challenges, from practical software design, development and engineering challenges to statistical and conceptual modelling challenges. BEAST 2 is one such computational software platform, and was first announced over 4 years ago. Here we describe a series of major new developments in the BEAST 2 core platform and model hierarchy that have occurred since the first release of the software, culminating in the recent 2.5 release. Author summary Bayesian phylogenetic inference methods have undergone considerable development in recent years, and joint modelling of rich evolutionary data, including genomes, phenotypes and fossil occurrences is increasingly common. Advanced computational software packages that allow robust development of compatible (sub-)models which can be composed into a full model hierarchy have played a key role in these developments. Developing scientific software is increasingly crucial to advancement in many fields of biology. The challenges range from practical software development and engineering, distributed team coordination, conceptual development and statistical modelling, to validation and testing. BEAST 2 is one such computational software platform for phylogenetics, population genetics and phylodynamics, and was first announced over 4 years ago. Here we describe the full range of new tools and models available on the BEAST 2.5 platform, which expand joint evolutionary inference in many new directions, especially for joint inference over multiple data types, non-tree models and complex phylodynamics.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?