Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Ultradense protium p(0) a… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Ultradense protium p(0) and deuterium D(0) and their relation to ordinary Rydberg matter: a review

Forskningsöversiktsartikel
Författare Leif Holmlid
Sindre Zeiner-Gundersen
Publicerad i Physica Scripta
Volym 94
Nummer/häfte 7
ISSN 0031-8949
Publiceringsår 2019
Publicerad vid Institutionen för kemi och molekylärbiologi
Språk en
Länkar https://doi.org/10.1088/1402-4896/a...
Ämnesord ultra-dense hydrogen, quantum material, cluster, mass spectrometry
Ämneskategorier Fysik, Kemi

Sammanfattning

The extremely large density of ultra-dense hydrogen H(0) has been proved in numerous experiments by three laser-induced methods, namely Coulomb explosions observed by particle time-of-flight (TOF) and TOF mass spectrometry, rotational emission spectroscopy in the visible, and annihilation-like meson ejecting nuclear reaction processes. The density of H(0) at the quite common spin level s = 2 is of the order of 100 kg cm−3. The theory of ultra-dense hydrogen H(0) is described briefly, especially the 'mixed' spin quantum number s and its relation to the internuclear distances. The orbital angular momentum of the bonding electrons in H(0) is l = 0, which gives the H(0) designation. At s = 2 with electron total angular momentum L = ħ, the internuclear distance is 2.24 pm, and at s = 1 thus L = ħ/2, it is as small as 0.56 pm. The internuclear distances are measured by optical rotational spectroscopy with a precision as good as 10−3, thus with femtometer resolution. The dimensional factor (ratio of internuclear distance to the electron orbit radius) was determined to be 2.9 by electrostatic stability calculations for ordinary Rydberg matter. This value is found to be valid with high precision also for H(0) clusters with different shapes. Superfluidity and a Meissner effect at room temperature are only found for the long chain clusters H2N (0), while the small H3(0) and H4(0) clusters do not have any super properties. Instead, they are the clusters in which most of the nuclear reaction processes take place. These processes give meson showers (most types of kaons and pions) and, after meson decay, large fluxes of muons and other leptons. Published applications of these results already exist in the field of nuclear reactions, energy production (patented fusion reactor), space physics (the solar wind), and in astrophysics (dark matter and the interstellar medium).

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?