Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Challenges and Best Pract… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera

Artikel i vetenskaplig tidskrift
Författare J. Kelly
N. Kljun
P. O. Olsson
L. Mihai
Bengt Liljeblad
Per Weslien
Leif Klemedtsson
L. Eklundh
Publicerad i Remote Sensing
Volym 11
Nummer/häfte 5
ISSN 2072-4292
Publiceringsår 2019
Publicerad vid Institutionen för biologi och miljövetenskap
Språk en
Länkar dx.doi.org/10.3390/rs11050567
Ämnesord UAV, UAS, thermal infrared, FLIR, calibration, temperature, radiometric, remote sensing, vignetting, NUC, water-stress, variability, imagery, forest, scale, Remote Sensing
Ämneskategorier Miljövetenskap

Sammanfattning

Miniaturized thermal infrared (TIR) cameras that measure surface temperature are increasingly available for use with unmanned aerial vehicles (UAVs). However, deriving accurate temperature data from these cameras is non-trivialsince they are highly sensitive to changes in their internal temperature and low-cost models are often not radiometrically calibrated. We present the results of laboratory and field experiments that tested the extent of the temperature-dependency of a non-radiometric FLIR Vue Pro 640. We found that a simple empirical line calibration using at least three ground calibration points was sufficient to convert camera digital numbers to temperature values for images captured during UAV flight. Although the camera performed well under stable laboratory conditions (accuracy +/- 0.5 degrees C), the accuracy declined to +/- 5 degrees C under the changing ambient conditions experienced during UAV flight. The poor performance resulted from the non-linear relationship between camera output and sensor temperature, which was affected by wind and temperature-drift during flight. The camera's automated non-uniformity correction (NUC) could not sufficiently correct for these effects. Prominent vignetting was also visible in images captured under both stable and changing ambient conditions. The inconsistencies in camera output over time and across the sensor will affect camera applications based on relative temperature differences as well as user-generated radiometric calibration. Based on our findings, we present a set of best practices for UAV TIR camera sampling to minimize the impacts of the temperature dependency of these systems.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?