Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Identification and recons… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Identification and reconstruction of novel antibiotic resistance genes from metagenomes

Artikel i vetenskaplig tidskrift
Författare Fanny Berglund
Tobias Österlund
Fredrik Boulund
Nachiket Marathe
D. G. Joakim Larsson
Erik Kristiansson
Publicerad i Microbiome
Volym 7
Publiceringsår 2019
Publicerad vid Institutionen för matematiska vetenskaper
Institutionen för matematiska vetenskaper, Tillämpad matematik och statistik
CARe - Centrum för antibiotikaresistensforskning
Institutionen för biomedicin, avdelningen för infektionssjukdomar
Språk en
Länkar https://doi.org/10.1186/s40168-019-...
Ämneskategorier Mikrobiologi inom det medicinska området, Bioinformatik och systembiologi, Biokemi och molekylärbiologi

Sammanfattning

Background Environmental and commensal bacteria maintain a diverse and largely unknown collection of antibiotic resistance genes (ARGs) that, over time, may be mobilized and transferred to pathogens. Metagenomics enables cultivation-independent characterization of bacterial communities but the resulting data is noisy and highly fragmented, severely hampering the identification of previously undescribed ARGs. We have therefore developed fARGene, a method for identification and reconstruction of ARGs directly from shotgun metagenomic data. Results fARGene uses optimized gene models and can therefore with high accuracy identify previously uncharacterized resistance genes, even if their sequence similarity to known ARGs is low. By performing the analysis directly on the metagenomic fragments, fARGene also circumvents the need for a high-quality assembly. To demonstrate the applicability of fARGene, we reconstructed β-lactamases from five billion metagenomic reads, resulting in 221 ARGs, of which 58 were previously not reported. Based on 38 ARGs reconstructed by fARGene, experimental verification showed that 81% provided a resistance phenotype in Escherichia coli. Compared to other methods for detecting ARGs in metagenomic data, fARGene has superior sensitivity and the ability to reconstruct previously unknown genes directly from the sequence reads. Conclusions We conclude that fARGene provides an efficient and reliable way to explore the unknown resistome in bacterial communities. The method is applicable to any type of ARGs and is freely available via GitHub under the MIT license.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?