Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Sensor-based algorithmic … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Sensor-based algorithmic dosing suggestions for oral administration of levodopa/carbidopa microtablets for Parkinson’s disease: a first experience

Artikel i vetenskaplig tidskrift
Författare Ilias Thomas
Moudud Alam
Filip Bergquist
Dongni Johansson
Mevludin Memedi
Dag Nyholm
Jerker Westin
Publicerad i Journal of Neurology
Volym 266
Nummer/häfte 3
Sidor 651–658
ISSN 0340-5354
Publiceringsår 2019
Publicerad vid Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap
Institutionen för neurovetenskap och fysiologi, sektionen för farmakologi
Sidor 651–658
Språk en
Länkar doi.org/10.1007/s00415-019-09183-6
Ämnesord Algorithmic suggestions, Levodopa, Oral medication, Parkinson’s disease, Sensor data
Ämneskategorier Farmakologi, Neurologi

Sammanfattning

© 2019, The Author(s). Objective: Dosing schedules for oral levodopa in advanced stages of Parkinson’s disease (PD) require careful tailoring to fit the needs of each patient. This study proposes a dosing algorithm for oral administration of levodopa and evaluates its integration into a sensor-based dosing system (SBDS). Materials and methods: In collaboration with two movement disorder experts a knowledge-driven, simulation based algorithm was designed and integrated into a SBDS. The SBDS uses data from wearable sensors to fit individual patient models, which are then used as input to the dosing algorithm. To access the feasibility of using the SBDS in clinical practice its performance was evaluated during a clinical experiment where dosing optimization of oral levodopa was explored. The supervising neurologist made dosing adjustments based on data from the Parkinson’s KinetiGraph™ (PKG) that the patients wore for a week in a free living setting. The dosing suggestions of the SBDS were compared with the PKG-guided adjustments. Results: The SBDS maintenance and morning dosing suggestions had a Pearson’s correlation of 0.80 and 0.95 (with mean relative errors of 21% and 12.5%), to the PKG-guided dosing adjustments. Paired t test indicated no statistical differences between the algorithmic suggestions and the clinician’s adjustments. Conclusion: This study shows that it is possible to use algorithmic sensor-based dosing adjustments to optimize treatment with oral medication for PD patients.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?