Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Secondary organic aerosol… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Secondary organic aerosol reduced by mixture of atmospheric vapours

Artikel i vetenskaplig tidskrift
Författare Gordon McFiggans
Thomas F. Mentel
Jürgen Wildt
Pullinen, Iida
Sungah Kang
Einhard Kleist
Sebastian Schmitt
Monika Springer
Ralf Tillmann
Cheng Wu
Defeng Zhao
Mattias Hallquist
Cameron Faxon
Michael Le Breton
Åsa M. Hallquist
David Simpson
Robert Bergström
et al.
Publicerad i Nature
Volym 565
Nummer/häfte 7741
Sidor 587-593
ISSN 0028-0836
Publiceringsår 2019
Publicerad vid Institutionen för kemi och molekylärbiologi
Sidor 587-593
Språk en
Länkar https://doi.org/10.1038/s41586-018-...
Ämneskategorier Kemi, Analytisk kemi, Fysikalisk kemi, Annan kemi, Geovetenskap och miljövetenskap, Klimatforskning, Miljövetenskap, Miljökemi, Meteorologi och atmosfärforskning

Sammanfattning

Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene 'scavenges' hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?