Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

Gridmapping the norther… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Gridmapping the northern plains of Mars: Geomorphological, Radar and Water-Equivalent Hydrogen results from Arcadia Plantia.

Artikel i vetenskaplig tidskrift
Författare Jason D. Ramsdale
Matthew R. Balme
Colman Gallagher
Susan J. Conway
Isaac B. Smith
Ernst Hauber
Csilla Orgel
Antoine Séjourné
Francois Costard
Vince R. Eke
Stephan A. van Gasselt
Andreas Johnsson
Ákos Kereszturi
Anna Losiak
Richard J. Massey
Thomas Platz
Dennis Reiss
Zuzanna M. Swirad
Luis F. A. Teodoro
Jack T. Wilson
Publicerad i Journal of Geophysical Research - Planets
Volym 124
Nummer/häfte 2
Sidor 504-27
Publiceringsår 2019
Publicerad vid Institutionen för geovetenskaper
Sidor 504-27
Språk en
Länkar https://doi.org/10.1029/2018JE00566...
Ämnesord Permafrost, Ice, Arcadia Planitia, Grid-mapping, Mars, Climate, Landforms, Planetary Science, Geomorphology, Latitude Dependent Mantle
Ämneskategorier Planetsystemet, Annan geovetenskap och miljövetenskap, Fysisk geografi, Klimatforskning


A project of mapping ice‐related landforms was undertaken to understand the role of subsurface ice in the northern plains. This work is the first continuous regional mapping from CTX (ConTeXt Camera, 6 m/pixel; Malin et al., 2007) imagery in Arcadia Planitia along a strip 300 km across stretching from 30°N to 80°N centered on the 170°W line of longitude. The distribution and morphotypes of these landforms were used to understand the permafrost cryolithology. The mantled and textured signatures occur almost ubiquitously between 35°N and 78°N and have a positive spatial correlation with inferred ice stability based on thermal modeling, neutron spectroscopy, and radar data. The degradational features into the LDM (latitude‐dependent mantle) include pits, scallops, and 100‐m polygons and provide supporting evidence for subsurface ice and volatile loss between 35 and 70°N in Arcadia with the mantle between 70 and 78°N appearing much more intact. Pitted terrain appears to be much more pervasive in Arcadia than in Acidalia and Utopia suggesting that the Arcadia study area had more widespread near‐surface subsurface ice and thus was more susceptible to pitting or that the ice was less well buried by sediments. Correlations with ice stability models suggest that lack of pits north of 65–70°N could indicate a relatively young age (~1 Ma); however, this could also be explained through regional variations in degradation rates. The deposition of the LDM is consistent with an air fall hypothesis; however, there appears to be substantial evidence for fluvial processes in southern Arcadia with older, underlying processes being equally dominant with the LDM and degradation thereof in shaping the landscape.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?