Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Surveillance of animal di… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Surveillance of animal diseases through implementation of a Bayesian spatio-temporal model: A simulation example with neurological syndromes in horses and West Nile Virus

Artikel i vetenskaplig tidskrift
Författare Ronny Hedell
M. G. Andersson
C. Faverjon
C. Marcillaud-Pitel
A. Leblond
Petter Mostad
Publicerad i Preventive Veterinary Medicine
Volym 162
Sidor 95-106
ISSN 0167-5877
Publiceringsår 2019
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 95-106
Språk en
Länkar dx.doi.org/10.1016/j.prevetmed.2018...
Ämnesord Bayesian model, Gibbs sampling, Hidden markov model, Spatio-temporal model, Syndromic surveillance, West Nile Virus
Ämneskategorier Sannolikhetsteori och statistik, Veterinärmedicin

Sammanfattning

A potentially sensitive way to detect disease outbreaks is syndromic surveillance, i.e. monitoring the number of syndromes reported in the population of interest, comparing it to the baseline rate, and drawing conclusions about outbreaks using statistical methods. A decision maker may use the results to take disease control actions or to initiate enhanced epidemiological investigations. In addition to the total count of syndromes there are often additional pieces of information to consider when assessing the probability of an outbreak. This includes clustering of syndromes in space and time as well as historical data on the occurrence of syndromes, seasonality of the disease, etc. In this paper, we show how Bayesian theory for syndromic surveillance applies to the occurrence of neurological syndromes in horses in France. Neurological syndromes in horses may be connected e.g. to West Nile Virus (WNV), a zoonotic disease of growing concern for public health in Europe. A Bayesian method for spatio-temporal cluster detection of syndromes and for determining the probability of an outbreak is presented. It is shown how surveillance can be performed simultaneously for a specific class of diseases (WNV or diseases similar to WNV in terms of the information available to the system) and a non-specific class of diseases (not similar to WNV in terms of the information available to the system). We also discuss some new extensions to the spatio-temporal models and the computational algorithms involved. It is shown step-by-step how data from historical WNV outbreaks and surveillance data for neurological syndromes can be used for model construction. The model is implemented using a Gibbs sampling procedure, and its sensitivity and specificity is evaluated. Finally, it is illustrated how predictive modelling of syndromes can be useful for decision making in animal health surveillance. © 2018 Elsevier B.V.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?