Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Integration of magnetic r… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Integration of magnetic resonance imaging and protein and metabolite CSF measurements to enable early diagnosis of secondary progressive multiple sclerosis

Artikel i vetenskaplig tidskrift
Författare S. Herman
P. E. Khoonsari
A. Tolf
J. Steinmetz
Henrik Zetterberg
T. Akerfeldt
P. J. Jakobsson
A. Larsson
O. Spjuth
J. Burman
K. Kultima
Publicerad i Theranostics
Volym 8
Nummer/häfte 16
Sidor 4477-4490
ISSN 1838-7640
Publiceringsår 2018
Publicerad vid Institutionen för neurovetenskap och fysiologi
Sidor 4477-4490
Språk en
Länkar dx.doi.org/10.7150/thno.26249
Ämnesord data integration, multiple sclerosis, disease progression, metabolomics, biomarker, pituitary-adrenal axis, cerebrospinal-fluid, mass-spectrometry, disease, biomarkers, dysregulation, expression, proteomics, pathways, lesions, kynurenine and serotonin pathways : progress in tryptophan
Ämneskategorier Neurologi

Sammanfattning

Molecular networks in neurological diseases are complex. Despite this fact, contemporary biomarkers are in most cases interpreted in isolation, leading to a significant loss of information and power. We present an analytical approach to scrutinize and combine information from biomarkers originating from multiple sources with the aim of discovering a condensed set of biomarkers that in combination could distinguish the progressive degenerative phenotype of multiple sclerosis (SPMS) from the relapsing-remitting phenotype (RRMS). Methods: Clinical and magnetic resonance imaging (MRI) data were integrated with data from protein and metabolite measurements of cerebrospinal fluid, and a method was developed to sift through all the variables to establish a small set of highly informative measurements. This prospective study included 16 SPMS patients, 30 RRMS patients and 10 controls. Protein concentrations were quantitated with multiplexed fluorescent bead-based immunoassays and ELISA. The metabolome was recorded using liquid chromatography-mass spectrometry. Clinical follow-up data of the SPMS patients were used to assess disease progression and development of disability. Results: Eleven variables were in combination able to distinguish SPMS from RRMS patients with high confidence superior to any single measurement. The identified variables consisted of three MRI variables: the size of the spinal cord and the third ventricle and the total number of T1 hypointense lesions; six proteins: galectin-9, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor alpha (TGF-alpha), tumor necrosis factor alpha (TNF-alpha), soluble CD40L (sCD40L) and platelet-derived growth factor AA (PDGF-AA); and two metabolites: 20 beta-dihydrocortisol (20 beta-DHF) and indolepyruvate. The proteins myelin basic protein (MBP) and macrophage-derived chemokine (MDC), as well as the metabolites 20 beta-DHF and 5,6-dihydroxyprostaglandin F1a (5,6-DH-PGF1), were identified as potential biomarkers of disability progression. Conclusion: Our study demonstrates, in a limited but well-defined and data-rich cohort, the importance and value of combining multiple biomarkers to aid diagnostics and track disease progression.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?