Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

A Numerical Algorithm for… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

A Numerical Algorithm for C-2-Splines on Symmetric Spaces

Artikel i vetenskaplig tidskrift
Författare Geir Bogfjellmo
Klas Modin
O. Verdier
Publicerad i SIAM Journal on Numerical Analysis
Volym 56
Nummer/häfte 4
Sidor 2623-2647
ISSN 0036-1429
Publiceringsår 2018
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 2623-2647
Språk en
Länkar dx.doi.org/10.1137/17m1123353
Ämneskategorier Beräkningsmatematik

Sammanfattning

Cubic spline interpolation on Euclidean space is a standard topic in numerical analysis, with countless applications in science and technology. In several emerging fields, for example, computer vision and quantum control, there is a growing need for spline interpolation on curved, non-Euclidean space. The generalization of cubic splines to manifolds is not self-evident, with several distinct approaches. One possibility is to mimic the acceleration minimizing property, which leads to Riemannian cubics. This, however, requires the solution of a coupled set of nonlinear boundary value problems that cannot be integrated explicitly, even if formulae for geodesics are available. Another possibility is to mimic De Casteljau's algorithm, which leads to generalized Bézier curves. To construct $C^2$-splines from such curves is a complicated nonlinear problem, until now lacking numerical methods. Here we provide an iterative algorithm for $C^2$-splines on Riemannian symmetric spaces, and we prove convergence of linear order. In terms of numerical tractability and computational efficiency, the new method surpasses those based on Riemannian cubics. Each iteration is parallel and thus suitable for multicore implementation. We demonstrate the algorithm for three geometries of interest: the $n$-sphere, complex projective space, and the real Grassmannian.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?