Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Multiscale Differential R… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Multiscale Differential Riccati Equations for Linear Quadratic Regulator Problems

Artikel i vetenskaplig tidskrift
Författare Axel Målqvist
Anna Persson
Tony Stillfjord
Publicerad i SIAM Journal on Scientific Computing
Volym 40
Nummer/häfte 4
Sidor A2406-A2426
ISSN 1064-8275
Publiceringsår 2018
Publicerad vid Institutionen för matematiska vetenskaper
Sidor A2406-A2426
Språk en
Länkar dx.doi.org/10.1137/17m1134500
Ämneskategorier Tillämpad matematik

Sammanfattning

We consider approximations to the solutions of differential Riccati equations in the context of linear quadratic regulator problems, where the state equation is governed by a multiscale operator. Similarly to elliptic and parabolic problems, standard finite element discretizations perform poorly in this setting unless the grid resolves the fine-scale features of the problem. This results in unfeasible amounts of computation and high memory requirements. In this paper, we demonstrate how the localized orthogonal decomposition method may be used to acquire accurate results also for coarse discretizations, at the low cost of solving a series of small, localized elliptic problems. We prove second-order convergence (except for a logarithmic factor) in the $L^2$ operator norm and first-order convergence in the corresponding energy norm. These results are both independent of the multiscale variations in the state equation. In addition, we provide a detailed derivation of the fully discrete matrix-valued equations and show how they can be handled in a low-rank setting for large-scale computations. In connection to this, we also show how to efficiently compute the relevant operator-norm errors. Finally, our theoretical results are validated by several numerical experiments.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?