Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Stochastic spatio-tempora… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Stochastic spatio-temporal model for wind speed variation in the Arctic

Artikel i vetenskaplig tidskrift
Författare Wengang Mao
Igor Rychlik
Publicerad i Ocean Engineering
Volym 165
Sidor 237-251
ISSN 0029-8018
Publiceringsår 2018
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 237-251
Språk en
Länkar https://doi.org/10.1016/j.oceaneng....
Ämnesord Wind speed, Spatio-temporal wind statistics, The Arctic, Exponential transformation, Hermite transformation, Gaussian field, Poisson hybrid model, Extreme wind
Ämneskategorier Sannolikhetsteori och statistik, Oceanografi, hydrologi, vattenresurser, Farkostteknik

Sammanfattning

A spatio-temporal transformed Gaussian field has been proposed to model wind variability in the northern North Atlantic, but it does not accurately describe the extreme wind speeds attributed to tropical storms and hurricanes. In Rychlik and Mao (2018), this model was generalized by adding certain number of random components to model rare events with extreme wind speeds or severe storms, and was named the hybrid model. In this study, these models are further developed and validated to properly describe the variation of wind speeds in the Arctic area. In most locations, the transformed Gaussian field is a sufficiently accurate model. However, in some regions, e.g., the Laptev and Beaufort Seas, this model severely underestimates the frequencies of extreme wind speeds. Therefore, the hybrid model is further improved to add Poisson distributed random storm events to describe the wind variation in these regions, and is named as the Poisson hybrid model. There are also locations, e.g., along the east coast of Greenland, where the frequencies of high wind speeds are severely overestimated by the transformed Gaussian model. It is shown that this model can be used to estimate the long-term distribution of wind speeds, predict extreme wind speeds and simulate the spatio-temporal wind fields for practical applications.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?