Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Newton's Equation on Diff… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Newton's Equation on Diffeomorphisms and Densities

Paper i proceeding
Författare B. Khesin
Gerard Misiolek
Klas Modin
Publicerad i Lecture Notes in Computer Science, vol. 10589, s. 873-873
ISBN 978-3-319-68445-1
ISSN 0302-9743
Förlag Springer
Publiceringsår 2017
Publicerad vid Institutionen för matematiska vetenskaper
Språk en
Länkar dx.doi.org/10.1007/978-3-319-68445-...
Ämnesord Newton's equation, Wasserstein distance, Fisher-Rao metric, Madelung transform, Compressible
Ämneskategorier Matematik

Sammanfattning

We develop a geometric framework for Newton-type equations on the infinite-dimensional configuration space of probability densities. It can be viewed as a second order analogue of the "Otto calculus" framework for gradient flow equations. Namely, for an n-dimensional manifold M we derive Newton's equations on the group of diffeomorphisms Diff(M) and the space of smooth probability densities Dens(M), as well as describe the Hamiltonian reduction relating them. For example, the compressible Euler equations are obtained by a Poisson reduction of Newton's equation on Diff(M) with the symmetry group of volume-preserving diffeomorphisms, while the Hamilton-Jacobi equation of fluid mechanics corresponds to potential solutions. We also prove that the Madelung transform between Schrodinger-type and Newton's equations is a symplectomorphism between the corresponding phase spaces T* Dens(M) and PL2 (M, C). This improves on the previous symplectic submersion result of von Renesse [1]. Furthermore, we prove that the Madelung transform is a Kahler map provided that the space of densities is equipped with the (prolonged) Fisher-Rao information metric and describe its dynamical applications. This geometric setting for the Madelung transform sheds light on the relation between the classical Fisher-Rao metric and its quantum counterpart, the Bures metric. In addition to compressible Euler, Hamilton-Jacobi, and linear and nonlinear Schrodinger equations, the framework for Newton equations encapsulates Burgers' inviscid equation, shallow water equations, two-component and mu-Hunter-Saxton equations, the Klein-Gordon equation, and infinite-dimensional Neumann problems.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?