Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Minimization of water pum… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Minimization of water pumps' electricity usage: A hybrid approach of regression models with optimization

Artikel i vetenskaplig tidskrift
Författare S. A. Bagloee
M. Asadi
Michael Patriksson
Publicerad i Expert Systems with Applications
Volym 107
Sidor 222-242
ISSN 0957-4174
Publiceringsår 2018
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 222-242
Språk en
Länkar https://doi.org/10.1016/j.eswa.2018...
Ämnesord Electricity consumption, Water distribution system, Variable-speed pump, Machine-learning, network design problem, distribution-systems, supply systems, scheduling, problem, algorithms, management, operation, efficiency, program, Computer Science, Engineering, Operations Research & Management Science
Ämneskategorier Elektroteknik och elektronik, Data- och informationsvetenskap

Sammanfattning

Due to pervasive deployment of electricity-propelled water-pumps, water distribution systems (WDSs) are energy-intensive technologies which are largely operated and controlled by engineers based on their judgments and discretions. Hence energy efficiency in the water sector is a serious concern. To this end, this study is dedicated to the optimal operation of the WDS which is articulated as minimization of the pumps' energy consumption while maintaining flow, pressure, and tank water levels at a minimum level, also known as pump scheduling problem (PSP). This problem is proved to be NP-hard (i.e. a difficult problem computationally). We therefore develop a hybrid methodology incorporating machine-learning techniques as well as optimization methods to address real-life and large-sized WDSs. Other main contributions of this research are (i) in addition to fixed-speed pumps, the variable-speed pumps are optimally controlled, (ii) and operational rules such as water allocation rules can also be explicitly considered in the methodology. This methodology is tested using a large dataset in which the results are found to be highly promising. This methodology has been coded as a user-friendly software composed of MS-Excel (as a user interface), MS-Access (a database), MATLAB (for machine-learning), GAMS (with CPLEX solver for solving optimization problem) and EPANET (to solve hydraulic models). (C) 2018 Elsevier Ltd. All rights reserved.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?