Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Seascape genetics and bio… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak-Kattegat region of the eastern North Sea

Artikel i vetenskaplig tidskrift
Författare Marlene Jahnke
Per R. Jonsson
Per-Olav Moksnes
Lars-Ove Loo
Martin Nilsson Jacobi
Jeanine Olsen
Publicerad i Evolutionary Applications
Volym 11
Nummer/häfte 5
Sidor 645-661
ISSN 1752-4571
Publiceringsår 2018
Publicerad vid Institutionen för marina vetenskaper
Sidor 645-661
Språk en
Länkar https://doi.org/10.1111/eva.12589
Ämneskategorier Marin ekologi

Sammanfattning

Maintaining and enabling evolutionary processes within meta-populations is critical to resistance, resilience and adaptive potential. Knowledge about which populations act as sources or sinks, and the direction of gene flow, can help to focus conservation efforts more effectively and forecast how populations might respond to future anthropogenic and environmental pressures. As a foundation species and habitat provider, Zostera marina (eelgrass) is of critical importance to ecosystem functions including fisheries. Here we estimate connectivity of Z. marina in the Skagerrak-Kattegat region of the North Sea based on genetic and biophysical modelling. Genetic diversity, population structure and migration were analysed at 23 locations using 20 microsatellite loci and a suite of analytical approaches. Oceanographic connectivity was analysed using Lagrangian dispersal simulations based on contemporary and historical distribution data dating back to the late 19th century. Population clusters, barriers and networks of connectivity were found to be very similar based on either genetic or oceanographic analyses. A single-generation model of dispersal was not realistic, whereas multi-generation models that integrate stepping-stone dispersal and extant and historic distribution data were able to capture and model genetic connectivity patterns well. Passive rafting of flowering shoots along oceanographic currents is the main driver of gene flow at this spatial-temporal scale and extant genetic connectivity strongly reflects the “ghost of dispersal past” sensu Benzie 1999. The identification of distinct clusters, connectivity hotspots and areas where connectivity has become limited over the last century is critical information for spatial management, conservation and restoration of eelgrass.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?