Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Robust intersection of st… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Robust intersection of structured hexahedral meshes and degenerate triangle meshes with volume fraction applications

Artikel i vetenskaplig tidskrift
Författare Frida Svelander
Gustav Kettil
Tomas Johnson
Andreas Mark
Anders Logg
Fredrik Edelvik
Publicerad i Numerical Algorithms
Volym 77
Nummer/häfte 4
Sidor 1029–1068
ISSN 1017-1398
Publiceringsår 2018
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 1029–1068
Språk en
Länkar https://doi.org/10.1007/s11075-017-...
Ämnesord Cut-cell, Mesh repair, Overlapping triangles, Split hexahedra, Volume fraction
Ämneskategorier Beräkningsmatematik, Tillämpad matematik

Sammanfattning

© 2017 The Author(s) Two methods for calculating the volume and surface area of the intersection between a triangle mesh and a rectangular hexahedron are presented. The main result is an exact method that calculates the polyhedron of intersection and thereafter the volume and surface area of the fraction of the hexahedral cell inside the mesh. The second method is approximate, and estimates the intersection by a least squares plane. While most previous publications focus on non-degenerate triangle meshes, we here extend the methods to handle geometric degeneracies. In particular, we focus on large-scale triangle overlaps, or double surfaces. It is a geometric degeneracy that can be hard to solve with existing mesh repair algorithms. There could also be situations in which it is desirable to keep the original triangle mesh unmodified. Alternative methods that solve the problem without altering the mesh are therefore presented. This is a step towards a method that calculates the solid area and volume fractions of a degenerate triangle mesh including overlapping triangles, overlapping meshes, hanging nodes, and gaps. Such triangle meshes are common in industrial applications. The methods are validated against three industrial test cases. The validation shows that the exact method handles all addressed geometric degeneracies, including double surfaces, small self-intersections, and split hexahedra.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?