Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

On geodesic completeness … - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

On geodesic completeness for Riemannian metrics on smooth probability densities

Artikel i vetenskaplig tidskrift
Författare M. Bauer
S. Joshi
Klas Modin
Publicerad i Calculus of Variations and Partial Differential Equations
Volym 56
Nummer/häfte 4
ISSN 0944-2669
Publiceringsår 2017
Publicerad vid Institutionen för matematiska vetenskaper
Språk en
Länkar https://doi.org/10.1007/s0052
Ämneskategorier Matematisk analys

Sammanfattning

The geometric approach to optimal transport and information theory has triggered the interpretation of probability densities as an infinite-dimensional Riemannian manifold. The most studied Riemannian structures are the Otto metric, yielding the L-2-Wasserstein distance of optimal mass transport, and the Fisher-Rao metric, predominant in the theory of information geometry. On the space of smooth probability densities, none of these Riemannian metrics are geodesically complete-a property desirable for example in imaging applications. That is, the existence interval for solutions to the geodesic flow equations cannot be extended to the whole real line. Here we study a class of Hamilton-Jacobi-like partial differential equations arising as geodesic flow equations for higher-order Sobolev type metrics on the space of smooth probability densities. We give order conditions for global existence and uniqueness, thereby providing geodesic completeness. The system we study is an interesting example of a flow equation with loss of derivatives, which is well-posed in the smooth category, yet non-parabolic and fully non-linear. On a more general note, the paper establishes a link between geometric analysis on the space of probability densities and analysis of Euler-Arnold equations in topological hydrodynamics.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?