Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän

3D Limb Movement Tracking… - Göteborgs universitet Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

3D Limb Movement Tracking and Analysis for Neurological Dysfunctions of Neonates Using Multi-Camera Videos

Paper i proceeding
Författare Irene Y.H. Gu
Grzegorz Sowulewski
Yixiao Yun
Anders Flisberg
Magnus Thordstein
Publicerad i 38th Engineering Medicine and Biology Society Conference (EMBC), Orlando, USA 2016
Publiceringsår 2016
Publicerad vid Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap och rehabilitering
Institutionen för kliniska vetenskaper, Avdelningen för pediatrik
Språk en
Ämnesord 3D trajectory tracking, multi-camera video, neurological dysfunction quantification, Neonates
Ämneskategorier Signalbehandling, Bildanalys, Datorseende och robotik (autonoma system), Neurologi


Central nervous system dysfunction in infants may be manifested through inconsistent, rigid and abnormal limb movements. Detection of limb movement anomalies associated with such neurological dysfunctions in infants is the first step towards early treatment for improving infant development. This paper addresses the issue of detecting and quantifying limb movement anomalies in infants through non-invasive 3D image analysis methods using videos from multiple camera views. We propose a novel scheme for tracking 3D time trajectories of markers on infant’s limbs by video analysis techniques. The proposed scheme employ videos captured from three camera views. This enables us to detect a set of enhanced 3D markers through cross-view matching and to effectively handle marker self-occlusions by other body parts. We track a set of 3D trajectories of limb movements by a set of particle filters in parallel, enabling more robust 3D tracking of markers, and use the 3D model errors for quantifying abrupt limb movements. The proposed work makes a significant advancement to the previous work in [1] through employing tracking in 3D space, and hence overcome several main barriers that hinder real applications by using single camera-based techniques. To the best of our knowledge, applying such a multi-view video analysis approach for assessing neurological dysfunctions of infants through 3D time trajectories of markers on limbs is novel, and could lead to computer-aided tools for diagnosis of dysfunctions where early treatment may improve infant development. Experiments were conducted on multi-view neonate videos recorded in a clinical setting and results have provided further support to the proposed method.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?