Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Segre numbers, a generali… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Segre numbers, a generalized King formula, and local intersections

Artikel i vetenskaplig tidskrift
Författare Mats Andersson
Håkan Samuelsson
Elizabeth Wulcan
Alain Yger
Publicerad i Journal für die Reine und Angewandte Mathematik
Volym 728
Sidor 105–136
ISSN 0075-4102
Publiceringsår 2017
Publicerad vid Institutionen för matematiska vetenskaper
Sidor 105–136
Språk en
Länkar dx.doi.org/10.1515/crelle-2014-0109
Ämneskategorier Matematisk analys, Geometri

Sammanfattning

Let $\mathcal{J}$ be an ideal sheaf on a reduced analytic space $X$ with zero set $Z$. We show that the Lelong numbers of the restrictions to $Z$ of certain generalized Monge– Ampère products $(dd^c \log |f|^2)^k$, where $f$ is a tuple of generators of $\mathcal{J}$, coincide with the so-called Segre numbers of $\mathcal{J}$, introduced independently by Tworzewski, Achilles–Manaresi, and Gaffney–Gassler. More generally we show that these currents satisfy a generalization of the classical King formula that takes into account fixed and moving components of Vogel cycles associated with $\mathcal{J}$. A basic tool is a new calculus for products of positive currents of Bochner–Martinelli type. We also discuss connections to intersection theory.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?