Till sidans topp

Sidansvarig: Webbredaktion
Sidan uppdaterades: 2012-09-11 15:12

Tipsa en vän
Utskriftsversion

Pore size effects on conv… - Göteborgs universitet Till startsida
Webbkarta
Till innehåll Läs mer om hur kakor används på gu.se

Pore size effects on convective flow and diffusion through nanoporous silica gels

Artikel i vetenskaplig tidskrift
Författare Charlotte Hamngren Blomqvist
Christoffer Abrahamsson
Tobias Gebäck
A. Altskär
Anne-Marie Hermansson
M. Nydén
Stefan Gustafsson
Niklas Lorén
Eva Olsson
Publicerad i Colloids and Surfaces A: Physicochemical and Engineering Aspects
Volym 484
Sidor 288-296
ISSN 0927-7757
Publiceringsår 2015
Publicerad vid Institutionen för matematiska vetenskaper, matematik
Sidor 288-296
Språk en
Länkar dx.doi.org/10.1016/j.colsurfa.2015....
Ämnesord Liquid permeability, Mass transport, Model material, Nanoporous, Silica gel
Ämneskategorier Annan materialteknik, Fysik

Sammanfattning

Material structure has great impact on mass transport properties, a relationship that needs to be understood on several length scales. Describing and controlling the properties of flow through soft materials are both challenges concerning the industrial use of gel structures. This paper reports on how the porous structure in nanoporous materials affects the water transport through them. We used three different silica gels with large differences in the pore sizes but of equal silica concentration. Particle morphology and gel structure were studied using high-resolution transmission electron microscopy and image analysis to estimate the pore size distribution and intrinsic surface area of each gel. The mass transport was studied using a flow measurement setup and nuclear magnetic resonance diffusometry. The average pore size ranged from approximately 500. nm down to approximately 40. nm. An acknowledged limit for convective flow to occur is in the pore size range between 100 and 200. nm. The results verified the existence of a non-linear relationship between pore size and liquid flow at length scales below 500. nm, experimentally. A factor of 4.3 in flow speed separated the coarser gel from the other two, which presented almost identical flow speed data despite a factor 3 in pore size difference. In the setup, the mass transport in the gel with the largest pores was flow dominated, while the mass transport in the finer gels was diffusion dominated. Besides providing new insights into mass transport as a function of pore sizes, we conclude that three-dimensional analysis of the structures is needed for a comprehensive understanding of the correlation between structure and mass transport properties.

Sidansvarig: Webbredaktion|Sidan uppdaterades: 2012-09-11
Dela:

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?